La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
P. Delhaes , J.C. Rouillon , J.P. Manceau , D. Guerard , A. Herold
J. Physique Lett., 37 5 (1976) 127-129
Citations de cet article :
47 articles
Juan Carlos Ríos-Fernández, Celestino González Nicieza and M. Inmaculada Álvarez Fernández (2023) https://doi.org/10.2139/ssrn.4592752
C13
NMR study of the electronic structure of lithiated graphite
Dylan C. Maxwell, Christopher A. O'Keefe, Chao Xu and Clare P. Grey Physical Review Materials 7 (6) (2023) https://doi.org/10.1103/PhysRevMaterials.7.065402
Crystal structures and electronic band structures for hypothetic lithium boron nitride intercalation compounds
Jungryang Kim, Eiji Yamasue, Hideyuki Okumura and Keiichi N. Ishihara Journal of Alloys and Compounds 751 324 (2018) https://doi.org/10.1016/j.jallcom.2018.04.092
Exfoliation of Crystalline 2D Carbon Nitride: Thin Sheets, Scrolls and Bundles via Mechanical and Chemical Routes
Michael J. Bojdys, Nikolai Severin, Jürgen P. Rabe, et al. Macromolecular Rapid Communications 34 (10) 850 (2013) https://doi.org/10.1002/marc.201300086
The Li–C phase equilibria
Artem Kozlov, Martin Seyring, Martin Drüe, Markus Rettenmayr and Rainer Schmid-Fetzer International Journal of Materials Research 104 (11) 1066 (2013) https://doi.org/10.3139/146.110960
Intercalation of graphite and hexagonal boron nitride by lithium
B. Altintas, C. Parlak, C. Bozkurt and R. Eryiğit The European Physical Journal B 79 (3) 301 (2011) https://doi.org/10.1140/epjb/e2010-10660-4
Deducing the Density of Electronic States at the Fermi Level for Lithiated Carbons Using Combined Electrochemical and Electron Spin Resonance Measurements
Xiaorong Zhou, Lin Zhuang and Juntao Lu The Journal of Physical Chemistry B 107 (31) 7783 (2003) https://doi.org/10.1021/jp034342d
Intercalation compounds of graphite
M. S. Dresselhaus and G. Dresselhaus Advances in Physics 51 (1) 1 (2002) https://doi.org/10.1080/00018730110113644
Calculated electronic and optical properties of a graphite intercalation compound:
R Ahuja, S Auluck, O Eriksson and B Johansson Journal of Physics: Condensed Matter 9 (45) 9845 (1997) https://doi.org/10.1088/0953-8984/9/45/012
Dynamical study of graphite and graphite intercalation compounds
L. Lang, S. Doyen-Lang, A. Charlier and M. F. Charlier Physical Review B 49 (8) 5672 (1994) https://doi.org/10.1103/PhysRevB.49.5672
Ac - Na
F. Hulliger Landolt-Börnstein - Group III Condensed Matter, Ac - Na 21a 159 (1990) https://doi.org/10.1007/10332996_33
Ac - Na
R. Flükiger and T. Wolf Landolt-Börnstein - Group III Condensed Matter, Ac - Na 21a 557 (1990) https://doi.org/10.1007/10332996_115
Semimetals - Graphite and its Compounds
Modern Problems in Condensed Matter Sciences, Semimetals - Graphite and its Compounds 20 449 (1988) https://doi.org/10.1016/B978-0-444-87049-0.50020-2
Electronic Structure of LiC6Studied by Soft X-Ray Emission Spectroscopy
A Mansour and S Schnatterly Physica Scripta 35 (4) 595 (1987) https://doi.org/10.1088/0031-8949/35/4/036
EPR studies of AsO44-centres in the ferroelectric CsH2AsO4crystal
J F Sampaio, G M Ribeiro, A S Chaves and R Gazzinelli Journal of Physics C: Solid State Physics 19 (36) 7269 (1986) https://doi.org/10.1088/0022-3719/19/36/017
Theoretical investigation of the optical spectra ofLiC6
Nan-Xian Chen and Sohrab Rabii Physical Review B 31 (8) 4784 (1985) https://doi.org/10.1103/PhysRevB.31.4784
A molecular orbital study of the bonding in complexes of lithium with polynuclear aromatic hydrocarbons
D. A. Morton-Blake, J. Corish and F. B�ni�re Theoretica Chimica Acta 68 (5) 389 (1985) https://doi.org/10.1007/BF00529059
Theory of magnetic susceptibility in acceptor and donor graphite intercalation compounds
J. Blinowski and C. Rigaux Journal de Physique 45 (3) 545 (1984) https://doi.org/10.1051/jphys:01984004503054500
Elektrochemie schwarzer Kohlenstoffe
Jürgen O. Besenhard and Heinz P. Fritz Angewandte Chemie 95 (12) 954 (1983) https://doi.org/10.1002/ange.19830951204
Anisotropic metallic character of C6Li from CESR
P. Pfluger, K.A. Müller, W. Berlinger, V. Geiser and H.-J. Güntherodt Synthetic Metals 8 (1-2) 15 (1983) https://doi.org/10.1016/0379-6779(83)90004-8
The Electrochemistry of Black Carbons
Jürgen O. Besenhard and Heinz P. Fritz Angewandte Chemie International Edition in English 22 (12) 950 (1983) https://doi.org/10.1002/anie.198309501
Physics of Narrow Gap Semiconductors
C. Rigaux and J. Blinowski Lecture Notes in Physics, Physics of Narrow Gap Semiconductors 152 352 (1982) https://doi.org/10.1007/3-540-11191-3_61
Thermophysical Properties Research Literature Retrieval Guide 1900–1980
J. F. Chaney, V. Ramdas, C. R. Rodriguez and M. H. Wu Thermophysical Properties Research Literature Retrieval Guide 1900–1980 337 (1982) https://doi.org/10.1007/978-1-4757-1499-9_15
Cohesive Energy Studies of Intercalated Graphite Compounds: The Madelung Energies of C6Li and C8K
Robert Melville Metzger Molecular Crystals and Liquid Crystals 85 (1) 97 (1982) https://doi.org/10.1080/00268948208073635
Absolute spin susceptibility of LiC6: Density of states and orbital paramagnetism
S. Ikehata, J. W. Milliken, A. J. Heeger and J. E. Fischer Physical Review B 25 (3) 1726 (1982) https://doi.org/10.1103/PhysRevB.25.1726
Intercalation compounds of graphite
M.S. Dresselhaus and G. Dresselhaus Advances in Physics 30 (2) 139 (1981) https://doi.org/10.1080/00018738100101367
7Li and 133Cs NMR parameters in C6Li and C8Cs intercalated oriented graphites
G. Roth, K. Lüders, P. Pfluger and H.-J. Güntherodt Solid State Communications 39 (3) 423 (1981) https://doi.org/10.1016/0038-1098(81)90632-3
Different electronic structures of C6Li and C8K graphite intercalation compounds studied by positron annihilation
E. Cartier, F. Heinrich, P. Pfluger and H.-J. Güntherodt Solid State Communications 38 (10) 985 (1981) https://doi.org/10.1016/0038-1098(81)90793-6
Festkörperprobleme 21
Peter Pfluger and Hans-Joachim Güntherodt Advances in Solid State Physics, Festkörperprobleme 21 21 271 (1981) https://doi.org/10.1007/BFb0108608
Electronic structure of lithium graphite
G.K. Wertheim, P.T.Th.M. Van Attekum and S. Basu Solid State Communications 33 (11) 1127 (1980) https://doi.org/10.1016/0038-1098(80)91089-3
Nuclear relaxation times of Li in Li-graphitides
H. Estrade, J. Conard, P. Lauginie, et al. Physica B+C 99 (1-4) 531 (1980) https://doi.org/10.1016/0378-4363(80)90291-0
Graphite lamellar compounds EPR studies
P. Lauginie, H. Estrade, J. Conard, et al. Physica B+C 99 (1-4) 514 (1980) https://doi.org/10.1016/0378-4363(80)90288-0
Physical properties of first and second stage lithium graphite intercalation compounds
P. Delhaes, J.P. Manceau and D. Guerard Synthetic Metals 2 (3-4) 277 (1980) https://doi.org/10.1016/0379-6779(80)90057-0
Specific heat of LiC6 from 4-300 K
C. Ayache, E. Bonjour, R. Lagnier and J.E. Fischer Physica B+C 99 (1-4) 547 (1980) https://doi.org/10.1016/0378-4363(80)90294-6
Charge-Transfer and Non-Rigid-Band Effects in the Graphite Compound LiC6
W. Eberhardt, I. T. McGovern, E. W. Plummer and J. E. Fisher Physical Review Letters 44 (3) 200 (1980) https://doi.org/10.1103/PhysRevLett.44.200
Graphite intercalation compounds: A simple model of Fermi surface and transport properties
N. A. W. Holzwarth Physical Review B 21 (8) 3665 (1980) https://doi.org/10.1103/PhysRevB.21.3665
NMR studies of lamellar intercalation compounds
C. Berthier, Y. Chabre and P. Segransan Physica B+C 99 (1-4) 107 (1980) https://doi.org/10.1016/0378-4363(80)90217-X
Specific heat anomalies and spin-spin interactions in carbons: A review
S. Mrozowski Journal of Low Temperature Physics 35 (3-4) 231 (1979) https://doi.org/10.1007/BF00115580
Intercalated Layered Materials
John E. Fischer Intercalated Layered Materials 481 (1979) https://doi.org/10.1007/978-94-009-9415-7_9
Synthesis and properties of lithium-graphite intercalation compounds
S. Basu, C. Zeller, P.J. Flanders, et al. Materials Science and Engineering 38 (3) 275 (1979) https://doi.org/10.1016/0025-5416(79)90132-0
Synthesis and electrical resistivity of lithium-pyrographite intercalation compounds (stages I, II and III)
Denis Billaud, Edward McRae and Albert Hérold Materials Research Bulletin 14 (7) 857 (1979) https://doi.org/10.1016/0025-5408(79)90149-1
Low-temperature specific heats of graphite intercalation compounds with potassium and cesium
U. Mizutani, T. Kondow and T. B. Massalski Physical Review B 17 (8) 3165 (1978) https://doi.org/10.1103/PhysRevB.17.3165
Theoretical study of lithium graphite. I. Band structure, density of states, and Fermi-surface properties
N. A. W. Holzwarth, S. Rabii and L. A. Girifalco Physical Review B 18 (10) 5190 (1978) https://doi.org/10.1103/PhysRevB.18.5190
Magnetic Spin Susceptibility of AsF5-Intercalated Graphite: Determination of the Density of States at the Fermi Energy
B. R. Weinberger, J. Kaufer, A. J. Heeger, et al. Physical Review Letters 41 (20) 1417 (1978) https://doi.org/10.1103/PhysRevLett.41.1417
Theoretical study of lithium graphite. II. Spatial distribution of valence electrons
N. A. W. Holzwarth, L. A. Girifalco and S. Rabii Physical Review B 18 (10) 5206 (1978) https://doi.org/10.1103/PhysRevB.18.5206
Physical properties of graphite lamellar compounds with alkali metals and halogens
P Delhaes Materials Science and Engineering 31 225 (1977) https://doi.org/10.1016/0025-5416(77)90038-6
Résonance Magnétique Nucléaire du Lithium Interstitiel dans le Graphite
J Conard and H Estrade Materials Science and Engineering 31 173 (1977) https://doi.org/10.1016/0025-5416(77)90032-5