Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Effects of reinforcing tungsten fibers and skeleton pre-sintering temperature on microstructure, mechanical and electrical properties of ultrafine-grained tungsten‑copper composites

Kaile Ji, Yiheng Zhang, Bingqing Chen, et al.
International Journal of Refractory Metals and Hard Materials 108 105929 (2022)
https://doi.org/10.1016/j.ijrmhm.2022.105929

Neutron transmission simulation of texture in polycrystalline materials

L.L. Dessieux, A.D. Stoica, P.R. Bingham, et al.
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 459 166 (2019)
https://doi.org/10.1016/j.nimb.2019.09.010

Texture gradient studies of a Cu‐tube by the robot at STRESS‐SPEC

N. Al‐hamdany, H.‐G. Brokmeier, C. Randau, W. M. Gan and M. Völler
Crystal Research and Technology 49 (11) 888 (2014)
https://doi.org/10.1002/crat.201400229

Measurement and analysis of crystallographic texture

Hirofumi INOUE and Naotsugu INAKAZU
Journal of Japan Institute of Light Metals 47 (4) 246 (1997)
https://doi.org/10.2464/jilm.47.246

Microstructure and crystallographic texture of rolled polycrystalline Fe3Al

D. Raabe, J. Keichel and Z. Sun
Journal of Materials Science 31 (2) 339 (1996)
https://doi.org/10.1007/BF01139149

On the inhomogeneity of the crystallographic rolling texture of polycrystalline Fe3Al

D. Raabe and J. Keichel
Journal of Materials Research 11 (7) 1694 (1996)
https://doi.org/10.1557/JMR.1996.0212

Taylor simulation and experimental investigation of rolling textures of polycrystalline iron aluminides with special regard to slip on {112} planes

D. Raabe
Acta Materialia 44 (3) 937 (1996)
https://doi.org/10.1016/1359-6454(95)00243-X

Entropy optimization in quantitative texture analysis.  II. Application to pole-to-orientation density inversion

H. Schaeben
Journal of Applied Physics 69 (3) 1320 (1991)
https://doi.org/10.1063/1.347267

The Determination of Integrated Intensities from Polycrystalline Samples with Preferred Orientation

H. J. Bunge, M. Dahms and H. G. Brokmeier
Crystallography Reviews 2 (2) 67 (1989)
https://doi.org/10.1080/08893118908032948

Determination of the orientation distribution function from pole figures in arbitrarily defined cells

K. Pawlik
physica status solidi (b) 134 (2) 477 (1986)
https://doi.org/10.1002/pssb.2221340205

General Consideration of the Loss of Information on the Orientation Distribution Function of Texturized Samples in Pole Figure Measurements

S. Matthies and K. Helming
physica status solidi (b) 113 (2) 569 (1982)
https://doi.org/10.1002/pssb.2221130221

Importance of odd coefficients in texture calculations for trigonal–triclinic symmetries

F. Wagner, H. R. Wenk, C. Esling and H. J. Bunge
Physica Status Solidi (a) 67 (1) 269 (1981)
https://doi.org/10.1002/pssa.2210670127

Study of the ghost phenomena in mathematical texture analysis by means of standard functions

S. Matthies and F. Wagner
physica status solidi (b) 107 (2) 591 (1981)
https://doi.org/10.1002/pssb.2221070224

On the reproducibility of the orientation distribution function of texture samples from pole figures (IV). Reproduction methods

S. Matthies
Kristall und Technik 15 (10) 1189 (1980)
https://doi.org/10.1002/crat.19800151022