Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Suppression of uphill diffusion caused by phosphorus deactivation using carbon implantation

Ruey-Dar Chang, Yu-Ting Ling and Wan-Ting Su
Applied Surface Science 356 1150 (2015)
https://doi.org/10.1016/j.apsusc.2015.08.153

Ultrathin n+∕p junction in preamorphized silicon by phosphorus and carbon coimplantation engineering: Influence of C location

N. Cagnat, D. Mathiot and C. Laviron
Journal of Applied Physics 102 (10) (2007)
https://doi.org/10.1063/1.2811726

Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon

Peter Pichler
Computational Microelectronics, Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon 331 (2004)
https://doi.org/10.1007/978-3-7091-0597-9_5

Effect of composition on vacancy mediated diffusion in random binary alloys: First principles study of the Si1−xGex system

Panchapakesan Ramanarayanan, Kyeongjae Cho and Bruce M. Clemens
Journal of Applied Physics 94 (1) 174 (2003)
https://doi.org/10.1063/1.1578695

Physical processes associated with the deactivation of dopants in laser annealed silicon

Y. Takamura, P. B. Griffin and J. D. Plummer
Journal of Applied Physics 92 (1) 235 (2002)
https://doi.org/10.1063/1.1481974

A model of high-and low-temperature phosphorus diffusion in silicon by a dual pair mechanism

O. V. Aleksandrov
Semiconductors 35 (11) 1231 (2001)
https://doi.org/10.1134/1.1418063

Sn-Background-Induced Diffusion Enhancement of Sb in Si

Jacob Fage-Pedersen, Arne Nylandsted Larsen, Peter Gaiduk, John Lundsgaard Hansen and Margareta Linnarsson
Physical Review Letters 81 (26) 5856 (1998)
https://doi.org/10.1103/PhysRevLett.81.5856

Atomistic modeling of high-concentration effects of impurity diffusion in silicon

S. List and H. Ryssel
Journal of Applied Physics 83 (12) 7595 (1998)
https://doi.org/10.1063/1.367875

Atomistic models of vacancy‐mediated diffusion in silicon

Scott T. Dunham and Can Dong Wu
Journal of Applied Physics 78 (4) 2362 (1995)
https://doi.org/10.1063/1.360156

Diffusion of Electrically Active Sb Atoms in Heavily Doped Silicon: Monte‐Carlo Simulation with Regard to Collective Phenomena

S. A. Fedotov
physica status solidi (b) 186 (2) 375 (1994)
https://doi.org/10.1002/pssb.2221860205

Heavy doping effects in the diffusion of group IV and V impurities in silicon

A. Nylandsted Larsen, K. Kyllesbech Larsen, P. E. Andersen and B. G. Svensson
Journal of Applied Physics 73 (2) 691 (1993)
https://doi.org/10.1063/1.353324

Effect of grain microstructure on P diffusion in polycrystalline-on-single crystal silicon systems

S. Batra, K. H. Park, S. K. Banerjee, et al.
Journal of Electronic Materials 21 (2) 227 (1992)
https://doi.org/10.1007/BF02655841

A model for the diffusion and precipitation of antimony in highly doped δ layers in silicon

C. van Opdorp, L. J. van IJzendoorn, C. W. Fredriksz and D. J. Gravesteijn
Journal of Applied Physics 72 (9) 4047 (1992)
https://doi.org/10.1063/1.352338

Dopant redistribution in heavily doped silicon: Confirmation of the validity of the vacancy‐percolation model

D. Mathiot and J. C. Pfister
Journal of Applied Physics 66 (2) 970 (1989)
https://doi.org/10.1063/1.343476

Nonequilibrium behavior of charged point defects during phosphorus diffusion in silicon

W. B. Richardson and B. J. Mulvaney
Journal of Applied Physics 65 (6) 2243 (1989)
https://doi.org/10.1063/1.342836

Plateau and kink in P profiles diffused into Si: A result of strong bimolecular recombination?

W. B. Richardson and B. J. Mulvaney
Applied Physics Letters 53 (20) 1917 (1988)
https://doi.org/10.1063/1.100344

Supersaturation of self‐interstitials and undersaturation of vacancies during phosphorus diffusion in silicon

P. Fahey, R. W. Dutton and S. M. Hu
Applied Physics Letters 44 (8) 777 (1984)
https://doi.org/10.1063/1.94915

Dopant diffusion in silicon: A consistent view involving nonequilibrium defects

D. Mathiot and J. C. Pfister
Journal of Applied Physics 55 (10) 3518 (1984)
https://doi.org/10.1063/1.332941

On models of phosphorus diffusion in silicon

S. M. Hu, P. Fahey and R. W. Dutton
Journal of Applied Physics 54 (12) 6912 (1983)
https://doi.org/10.1063/1.331998

Diffusion of arsenic in silicon: Validity of the percolation model

D. Mathiot and J. C. Pfister
Applied Physics Letters 42 (12) 1043 (1983)
https://doi.org/10.1063/1.93836