La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
D. Mathiot , J.C. Pfister
J. Physique Lett., 43 12 (1982) 453-459
Citations de cet article :
35 articles
A review: wafer bonding of Si-based semiconductors
Shaoying Ke, Dongke Li and Songyan Chen Journal of Physics D: Applied Physics 53 (32) 323001 (2020) https://doi.org/10.1088/1361-6463/ab8769
Dopant-defect interactions in highly doped epitaxial Si:P thin films
Z.N. Weinrich, X. Li, S. Sharma, et al. Thin Solid Films 685 1 (2019) https://doi.org/10.1016/j.tsf.2019.05.059
Suppression of uphill diffusion caused by phosphorus deactivation using carbon implantation
Ruey-Dar Chang, Yu-Ting Ling and Wan-Ting Su Applied Surface Science 356 1150 (2015) https://doi.org/10.1016/j.apsusc.2015.08.153
Ultrathin n+∕p junction in preamorphized silicon by phosphorus and carbon coimplantation engineering: Influence of C location
N. Cagnat, D. Mathiot and C. Laviron Journal of Applied Physics 102 (10) (2007) https://doi.org/10.1063/1.2811726
Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon
Peter Pichler Computational Microelectronics, Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon 331 (2004) https://doi.org/10.1007/978-3-7091-0597-9_5
Effect of composition on vacancy mediated diffusion in random binary alloys: First principles study of the Si1−xGex system
Panchapakesan Ramanarayanan, Kyeongjae Cho and Bruce M. Clemens Journal of Applied Physics 94 (1) 174 (2003) https://doi.org/10.1063/1.1578695
Physical processes associated with the deactivation of dopants in laser annealed silicon
Y. Takamura, P. B. Griffin and J. D. Plummer Journal of Applied Physics 92 (1) 235 (2002) https://doi.org/10.1063/1.1481974
A model of high-and low-temperature phosphorus diffusion in silicon by a dual pair mechanism
O. V. Aleksandrov Semiconductors 35 (11) 1231 (2001) https://doi.org/10.1134/1.1418063
Diffusion and Clustering in Heavily Arsenic-Doped Silicon: Discrepancies and Explanation
Jianjun Xie and S. P. Chen Physical Review Letters 83 (9) 1795 (1999) https://doi.org/10.1103/PhysRevLett.83.1795
First-Principles Study of Vacancy-Assisted as Diffusion in Silicon
Jianjun Xie and S.P. Chen MRS Proceedings 568 (1999) https://doi.org/10.1557/PROC-568-147
Sn-Background-Induced Diffusion Enhancement of Sb in Si
Jacob Fage-Pedersen, Arne Nylandsted Larsen, Peter Gaiduk, John Lundsgaard Hansen and Margareta Linnarsson Physical Review Letters 81 (26) 5856 (1998) https://doi.org/10.1103/PhysRevLett.81.5856
Atomistic modeling of high-concentration effects of impurity diffusion in silicon
S. List and H. Ryssel Journal of Applied Physics 83 (12) 7595 (1998) https://doi.org/10.1063/1.367875
Complex Dynamical Phenomena in Heavily Arsenic Doped Silicon
Madhavan Ramamoorthy and Sokrates T. Pantelides Physical Review Letters 76 (25) 4753 (1996) https://doi.org/10.1103/PhysRevLett.76.4753
Simulation of Semiconductor Devices and Processes
S. T. Dunham and C. D. Wu Simulation of Semiconductor Devices and Processes 476 (1995) https://doi.org/10.1007/978-3-7091-6619-2_115
Fundamentals of Semiconductor Processing Technology
Badih El-Kareh Fundamentals of Semiconductor Processing Technology 467 (1995) https://doi.org/10.1007/978-1-4615-2209-6_7
Atomistic models of vacancy‐mediated diffusion in silicon
Scott T. Dunham and Can Dong Wu Journal of Applied Physics 78 (4) 2362 (1995) https://doi.org/10.1063/1.360156
S.T. Dunham and Can Dong Wu 101 (1994) https://doi.org/10.1109/NUPAD.1994.343481
Semiconductors and Semimetals
S.M. Hu Semiconductors and Semimetals 42 153 (1994) https://doi.org/10.1016/S0080-8784(08)60248-3
Diffusion of Electrically Active Sb Atoms in Heavily Doped Silicon: Monte‐Carlo Simulation with Regard to Collective Phenomena
S. A. Fedotov physica status solidi (b) 186 (2) 375 (1994) https://doi.org/10.1002/pssb.2221860205
Heavy doping effects in the diffusion of group IV and V impurities in silicon
A. Nylandsted Larsen, K. Kyllesbech Larsen, P. E. Andersen and B. G. Svensson Journal of Applied Physics 73 (2) 691 (1993) https://doi.org/10.1063/1.353324
Effect of grain microstructure on P diffusion in polycrystalline-on-single crystal silicon systems
S. Batra, K. H. Park, S. K. Banerjee, et al. Journal of Electronic Materials 21 (2) 227 (1992) https://doi.org/10.1007/BF02655841
A model for the diffusion and precipitation of antimony in highly doped δ layers in silicon
C. van Opdorp, L. J. van IJzendoorn, C. W. Fredriksz and D. J. Gravesteijn Journal of Applied Physics 72 (9) 4047 (1992) https://doi.org/10.1063/1.352338
Diffusion in Materials
Bernard Leroy Diffusion in Materials 525 (1990) https://doi.org/10.1007/978-94-009-1976-1_27
Dopant redistribution in heavily doped silicon: Confirmation of the validity of the vacancy‐percolation model
D. Mathiot and J. C. Pfister Journal of Applied Physics 66 (2) 970 (1989) https://doi.org/10.1063/1.343476
Nonequilibrium behavior of charged point defects during phosphorus diffusion in silicon
W. B. Richardson and B. J. Mulvaney Journal of Applied Physics 65 (6) 2243 (1989) https://doi.org/10.1063/1.342836
Point defects and dopant diffusion in silicon
P. M. Fahey, P. B. Griffin and J. D. Plummer Reviews of Modern Physics 61 (2) 289 (1989) https://doi.org/10.1103/RevModPhys.61.289
Plateau and kink in P profiles diffused into Si: A result of strong bimolecular recombination?
W. B. Richardson and B. J. Mulvaney Applied Physics Letters 53 (20) 1917 (1988) https://doi.org/10.1063/1.100344
Boron diffusion in silicon by a vacancy mechanism
D. Tsoukalas and P. Chenevier physica status solidi (a) 92 (2) 495 (1985) https://doi.org/10.1002/pssa.2210920219
Diffusion Mechanisms and Nonequilibrium Defects in SI
D. Mathiot and J. C. Pfister MRS Proceedings 36 (1984) https://doi.org/10.1557/PROC-36-117
Supersaturation of self‐interstitials and undersaturation of vacancies during phosphorus diffusion in silicon
P. Fahey, R. W. Dutton and S. M. Hu Applied Physics Letters 44 (8) 777 (1984) https://doi.org/10.1063/1.94915
Diffusion in Crystalline Solids
WERNER FRANK, ULRICH GÖSELE, HELMUT MEHRER and ALFRED SEEGER Diffusion in Crystalline Solids 63 (1984) https://doi.org/10.1016/B978-0-12-522662-2.50007-8
Dopant diffusion in silicon: A consistent view involving nonequilibrium defects
D. Mathiot and J. C. Pfister Journal of Applied Physics 55 (10) 3518 (1984) https://doi.org/10.1063/1.332941
On the diffusion of donors into silicon: High concentration and nonequilibrium defect effects
D. Mathiot and J.C. Pfister Physica B+C 116 (1-3) 95 (1983) https://doi.org/10.1016/0378-4363(83)90233-4
On models of phosphorus diffusion in silicon
S. M. Hu, P. Fahey and R. W. Dutton Journal of Applied Physics 54 (12) 6912 (1983) https://doi.org/10.1063/1.331998
Diffusion of arsenic in silicon: Validity of the percolation model
D. Mathiot and J. C. Pfister Applied Physics Letters 42 (12) 1043 (1983) https://doi.org/10.1063/1.93836