La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
S. Alexander , R. Orbach
J. Physique Lett., 43 17 (1982) 625-631
Citations de cet article :
1946 articles | Pages :
AC Conductivity of a Random Medium: a Percolation Approach
G. Giraud, J. Laugier, J. Clerc and J. Roussenq IEEE Transactions on Electrical Insulation EI-19 (3) 205 (1984) https://doi.org/10.1109/TEI.1984.298748
Exact-enumeration approach to random walks on percolation clusters in two dimensions
Imtiaz Majid, Daniel Ben- Avraham, Shlomo Havlin and H. Eugene Stanley Physical Review B 30 (3) 1626 (1984) https://doi.org/10.1103/PhysRevB.30.1626
Diffusion of pairs in random lattices
O. Päetzold Journal de Physique Lettres 45 (5) 193 (1984) https://doi.org/10.1051/jphyslet:01984004505019300
Scaling and density of states of fractal lattices from a generating function point of view
A.-M.S. Tremblay and B.W. Southern Journal de Physique Lettres 44 (20) 843 (1983) https://doi.org/10.1051/jphyslet:019830044020084300
Critical exponent of percolation conductivity by finite-size scaling
M Sahimi, B D Hughes, L E Scriven and H T Davis Journal of Physics C: Solid State Physics 16 (16) L521 (1983) https://doi.org/10.1088/0022-3719/16/16/004
Hydrodynamic dispersion in unsaturated porous media
P. G. De Gennes Journal of Fluid Mechanics 136 189 (1983) https://doi.org/10.1017/S0022112083002116
Scaling behavior of diffusion on percolation clusters
S. Havlin, D. Ben-Avraham and H. Sompolinsky Physical Review A 27 (3) 1730 (1983) https://doi.org/10.1103/PhysRevA.27.1730
Speculation on a scaling law for superconductor-resistor mixture exponent s in a percolation system
J Kertesz Journal of Physics A: Mathematical and General 16 (13) L471 (1983) https://doi.org/10.1088/0305-4470/16/13/006
Critical Dynamics at the Percolation Threshold by Fractal and Scaling Approaches
C. K. Harris and R. B. Stinchcombe Physical Review Letters 50 (18) 1399 (1983) https://doi.org/10.1103/PhysRevLett.50.1399
Renormalization-group analysis on fractals: Ising spin-glass and the Schrödinger equation
Jayanth R. Banavar and Marek Cieplak Physical Review B 28 (7) 3813 (1983) https://doi.org/10.1103/PhysRevB.28.3813
Percolation on Fractal Lattices
S. Havlin, D. Ben-Avraham and D. Movshovitz Physical Review Letters 51 (26) 2347 (1983) https://doi.org/10.1103/PhysRevLett.51.2347
The Vold-Sutherland and Eden models of cluster formation
Paul Meakin Journal of Colloid and Interface Science 96 (2) 415 (1983) https://doi.org/10.1016/0021-9797(83)90044-9
The Mathematics and Physics of Disordered Media: Percolation, Random Walk, Modeling, and Simulation
Muhammad Sahimi Lecture Notes in Mathematics, The Mathematics and Physics of Disordered Media: Percolation, Random Walk, Modeling, and Simulation 1035 314 (1983) https://doi.org/10.1007/BFb0073266
Exact fractals with adjustable fractal and fracton dimensionalities
D Ben-Avraham and S Havlin Journal of Physics A: Mathematical and General 16 (15) L559 (1983) https://doi.org/10.1088/0305-4470/16/15/002
Fractal dimensionality and the number of visited sites of the ant in the labyrinth
R B Pandey and D Stauffer Journal of Physics A: Mathematical and General 16 (14) L511 (1983) https://doi.org/10.1088/0305-4470/16/14/004
Organic Molecular Aggregates
R. Orbach Springer Series in Solid-State Sciences, Organic Molecular Aggregates 49 158 (1983) https://doi.org/10.1007/978-3-642-82141-7_16
Fractal geometry and anomalous diffusion in the backbone of percolation clusters
L Puech and R Rammal Journal of Physics C: Solid State Physics 16 (35) L1197 (1983) https://doi.org/10.1088/0022-3719/16/35/001
Hierarchical lattices: some examples with a comparison of intrinsic dimension and connectivity and Ising model exponents
J R Melrose Journal of Physics A: Mathematical and General 16 (13) 3077 (1983) https://doi.org/10.1088/0305-4470/16/13/032
The Mathematics and Physics of Disordered Media: Percolation, Random Walk, Modeling, and Simulation
Barry D. Hughes and Stephen Prager Lecture Notes in Mathematics, The Mathematics and Physics of Disordered Media: Percolation, Random Walk, Modeling, and Simulation 1035 1 (1983) https://doi.org/10.1007/BFb0073255
Diffusion on fractal lattices and the fractal Einstein relation
J A Given and B B Mandelbrot Journal of Physics A: Mathematical and General 16 (15) L565 (1983) https://doi.org/10.1088/0305-4470/16/15/003
Diffusion and fracton dimensionality on fractals and on percolation clusters
S Havlin and D Ben-Avraham Journal of Physics A: Mathematical and General 16 (13) L483 (1983) https://doi.org/10.1088/0305-4470/16/13/008
Relationship between the bulk modulus and the conductivity on a fractal
Kin Wah Yu, P. M. Chaikin and R. Orbach Physical Review B 28 (8) 4831 (1983) https://doi.org/10.1103/PhysRevB.28.4831
Confirmation of Dynamical Scaling at the Percolation Threshold
R. B. Pandey and D. Stauffer Physical Review Letters 51 (7) 527 (1983) https://doi.org/10.1103/PhysRevLett.51.527
Field theoretic approaches to biconnectedness in percolating systems
A B Harris and T C Lubensky Journal of Physics A: Mathematical and General 16 (11) L365 (1983) https://doi.org/10.1088/0305-4470/16/11/005
Random walk on fractals: numerical studies in two dimensions
J C Angles d'Auriac, A Benoit and R Rammal Journal of Physics A: Mathematical and General 16 (17) 4039 (1983) https://doi.org/10.1088/0305-4470/16/17/020
To What Class of Fractals Does the Alexander-Orbach Conjecture Apply?
Francois Leyvraz and H. Eugene Stanley Physical Review Letters 51 (22) 2048 (1983) https://doi.org/10.1103/PhysRevLett.51.2048
Spectral dimension and conductivity exponent of the percolating cluster
M. Daoud Journal de Physique Lettres 44 (23) 925 (1983) https://doi.org/10.1051/jphyslet:019830044023092500
Trapping and reaction rates on fractals: A random-walk study
A. Blumen, J. Klafter and G. Zumofen Physical Review B 28 (10) 6112 (1983) https://doi.org/10.1103/PhysRevB.28.6112
A. Coniglio 48 195 (1983) https://doi.org/10.1007/978-3-642-82138-7_11
Superconductivity on networks : II. The London approach
S. Alexander and E. Halevi Journal de Physique 44 (7) 805 (1983) https://doi.org/10.1051/jphys:01983004407080500
Energy migration in randomly doped crystals : geometrical properties of space and kinetic laws
P. Evesque Journal de Physique 44 (11) 1217 (1983) https://doi.org/10.1051/jphys:0198300440110121700
Random walks on fractal structures and percolation clusters
R. Rammal and G. Toulouse Journal de Physique Lettres 44 (1) 13 (1983) https://doi.org/10.1051/jphyslet:0198300440101300
Critical exponent for 3-D percolation conductivity, revisited
C.D. Mitescu and M.J. Musolf Journal de Physique Lettres 44 (16) 679 (1983) https://doi.org/10.1051/jphyslet:019830044016067900
Diffusion on a random lattice: Weak-disorder expansion in arbitrary dimension
B. Derrida and J. M. Luck Physical Review B 28 (12) 7183 (1983) https://doi.org/10.1103/PhysRevB.28.7183
Photon Echoes below 1 K in aNd3+-Doped Glass Fiber
J. Hegarty, M. M. Broer, B. Golding, J. R. Simpson and J. B. MacChesney Physical Review Letters 51 (22) 2033 (1983) https://doi.org/10.1103/PhysRevLett.51.2033
Novel Superuniversal Behavior of a Random-Walk Model
H. Eugene Stanley, Kiho Kang, Sidney Redner and Robin L. Blumberg Physical Review Letters 51 (14) 1223 (1983) https://doi.org/10.1103/PhysRevLett.51.1223
Fracton interpretation of vibrational properties of cross-linked polymers, glasses, and irradiated quartz
S. Alexander, C. Laermans, R. Orbach and H. M. Rosenberg Physical Review B 28 (8) 4615 (1983) https://doi.org/10.1103/PhysRevB.28.4615
Transfer matrix calculation of conductivity in three-dimensional random resistor networks at percolation threshold
B. Derrida, D. Stauffer, H.J. Herrmann and J. Vannimenus Journal de Physique Lettres 44 (17) 701 (1983) https://doi.org/10.1051/jphyslet:019830044017070100
Scaling analysis for random walk properties on percolation clusters
J C Angles d'Auriac and R Rammal Journal of Physics C: Solid State Physics 16 (23) L825 (1983) https://doi.org/10.1088/0022-3719/16/23/001
Random walks on percolation clusters at the percolation threshold
M Sahimi and G R Jerauld Journal of Physics C: Solid State Physics 16 (29) L1043 (1983) https://doi.org/10.1088/0022-3719/16/29/005
Superconducting diamagnetism near the percolation threshold
R. Rammal, T.C. Lubensky and G. Toulouse Journal de Physique Lettres 44 (2) 65 (1983) https://doi.org/10.1051/jphyslet:0198300440206500
Complex spectral dimensionality on fractal structures
D. Bessis, J.S. Geronimo and P. Moussa Journal de Physique Lettres 44 (24) 977 (1983) https://doi.org/10.1051/jphyslet:019830044024097700
Solutions to the Schrödinger equation on some fractal lattices
Eytan Domany, Shlomo Alexander, David Bensimon and Leo P. Kadanoff Physical Review B 28 (6) 3110 (1983) https://doi.org/10.1103/PhysRevB.28.3110
Spectral Dimension for the Diffusion-Limited Aggregation Model of Colloid Growth
Paul Meakin and H. Eugene Stanley Physical Review Letters 51 (16) 1457 (1983) https://doi.org/10.1103/PhysRevLett.51.1457
A transfer-matrix approach to random resistor networks
B Derrida and J Vannimenus Journal of Physics A: Mathematical and General 15 (10) L557 (1982) https://doi.org/10.1088/0305-4470/15/10/007
Laser Spectroscopy of Solids
A. H. Francis and R. Kopelman Topics in Applied Physics, Laser Spectroscopy of Solids 49 241 (1981) https://doi.org/10.1007/3540167099_7
Pages :
1901 à 1946 sur 1946 articles