La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
D. Bessis , J.D. Fournier
J. Physique Lett., 45 17 (1984) 833-841
Citations de cet article :
34 articles
Complex-plane singularity dynamics for blow up in a nonlinear heat equation: analysis and computation
M Fasondini, J R King and J A C Weideman Nonlinearity 37 (10) 105005 (2024) https://doi.org/10.1088/1361-6544/ad700b
Poles, shocks, and tygers: The time-reversible Burgers equation
Arunava Das, Pinaki Dutta and Vishwanath Shukla Physical Review E 109 (6) (2024) https://doi.org/10.1103/PhysRevE.109.065108
Sequential flows by irrelevant operators
Christian Ferko and Savdeep Sethi SciPost Physics 14 (5) (2023) https://doi.org/10.21468/SciPostPhys.14.5.098
Burgers’ equation in the complex plane
Daniel J. VandenHeuvel, Christopher J. Lustri, John R. King, Ian W. Turner and Scott W. McCue Physica D: Nonlinear Phenomena 448 133686 (2023) https://doi.org/10.1016/j.physd.2023.133686
Numerical analytic continuation
Lloyd N. Trefethen Japan Journal of Industrial and Applied Mathematics 40 (3) 1587 (2023) https://doi.org/10.1007/s13160-023-00599-2
Emptiness formation in polytropic quantum liquids
Hsiu-Chung Yeh, Dimitri M Gangardt and Alex Kamenev Journal of Physics A: Mathematical and Theoretical 55 (6) 064002 (2022) https://doi.org/10.1088/1751-8121/ac47b1
Recent Advances in Industrial and Applied Mathematics
J. A. C. Weideman SEMA SIMAI Springer Series, Recent Advances in Industrial and Applied Mathematics 1 227 (2022) https://doi.org/10.1007/978-3-030-86236-7_13
Viscous Marangoni Flow Driven by Insoluble Surfactant and the Complex Burgers Equation
Darren G. Crowdy SIAM Journal on Applied Mathematics 81 (6) 2526 (2021) https://doi.org/10.1137/21M1400316
Inner symmetries of the spatially singular part of the solutions of the Burgers equation and their Lie representations
G. Barad, E. Czeizler and A. Paun Results in Physics 19 103322 (2020) https://doi.org/10.1016/j.rinp.2020.103322
Nonlinear dynamics of premixed flames: from deterministic stages to stochastic influence
B. Radisson, B. Denet and C. Almarcha Journal of Fluid Mechanics 903 (2020) https://doi.org/10.1017/jfm.2020.562
Pole’s decomposition for Burgers’ hierarchy with dynamical systems of poles for solutions of its first and second level
Inaam A. Malloki and Hussein Jameel Mutashar IOP Conference Series: Materials Science and Engineering 571 (1) 012028 (2019) https://doi.org/10.1088/1757-899X/571/1/012028
Theoretical Fluid Dynamics
Achim Feldmeier Theoretical and Mathematical Physics, Theoretical Fluid Dynamics 473 (2019) https://doi.org/10.1007/978-3-030-31022-6_12
Energy flux enhancement, intermittency and turbulence via Fourier triad phase dynamics in the 1-D Burgers equation
Brendan P. Murray and Miguel D. Bustamante Journal of Fluid Mechanics 850 624 (2018) https://doi.org/10.1017/jfm.2018.454
T T ¯ $$ \mathrm{T}\overline{\mathrm{T}} $$ -deformed 2D quantum field theories
Andrea Cavaglià, Stefano Negro, István M. Szécsényi and Roberto Tateo Journal of High Energy Physics 2016 (10) (2016) https://doi.org/10.1007/JHEP10(2016)112
$\mathcal {PT}$-symmetrically deformed shock waves
Andrea Cavaglia and Andreas Fring Journal of Physics A: Mathematical and Theoretical 45 (44) 444010 (2012) https://doi.org/10.1088/1751-8113/45/44/444010
Interference in disordered systems: A particle in a complex random landscape
Alexander Dobrinevski, Pierre Le Doussal and Kay Jörg Wiese Physical Review E 83 (6) (2011) https://doi.org/10.1103/PhysRevE.83.061116
Wrinkled flames and geometrical stretch
Bruno Denet and Guy Joulin Physical Review E 84 (1) (2011) https://doi.org/10.1103/PhysRevE.84.016315
Universal shocks in random matrix theory
Jean-Paul Blaizot and Maciej A. Nowak Physical Review E 82 (5) (2010) https://doi.org/10.1103/PhysRevE.82.051115
Burgers' equation in 2D SU(N) YM
H. Neuberger Physics Letters B 666 (1) 106 (2008) https://doi.org/10.1016/j.physletb.2008.06.064
Noise influence on pole solutions of the Sivashinsky equation for planar and outward propagating flames
R. V. Fursenko, K. L. Pan and S. S. Minaev Physical Review E 78 (5) (2008) https://doi.org/10.1103/PhysRevE.78.056301
Why is a shock not a caustic? The higher-order Stokes phenomenon and smoothed shock formation
S J Chapman, C J Howls, J R King and A B Olde Daalhuis Nonlinearity 20 (10) 2425 (2007) https://doi.org/10.1088/0951-7715/20/10/009
Computing the Dynamics of Complex Singularities of Nonlinear PDEs
J. A. C. Weideman SIAM Journal on Applied Dynamical Systems 2 (2) 171 (2003) https://doi.org/10.1137/S1111111102398305
Coherent Structures in Complex Systems
Guy Joulin, Gaël Boury, Pierre Cambray, Yves D’Angelo and Karl Joulain Lecture Notes in Physics, Coherent Structures in Complex Systems 567 127 (2001) https://doi.org/10.1007/3-540-44698-2_9
Dynamics and Condensation of Complex Singularities For Burgers' Equation I
David Senouf SIAM Journal on Mathematical Analysis 28 (6) 1457 (1997) https://doi.org/10.1137/S0036141095289373
Dynamics and Condensation of Complex Singularities for Burgers' Equation II
David Senouf SIAM Journal on Mathematical Analysis 28 (6) 1490 (1997) https://doi.org/10.1137/S0036141095289701
Pole dynamics and oscillations for the complex Burgers equation in the small-dispersion limit
D Senouf, R Caflisch and N Ercolani Nonlinearity 9 (6) 1671 (1996) https://doi.org/10.1088/0951-7715/9/6/016
Semiclassical description of angle-dependent magnetoresistance oscillations in quasi-one-dimensional metals
S. J. Blundell and J. Singleton Physical Review B 53 (9) 5609 (1996) https://doi.org/10.1103/PhysRevB.53.5609
Geometry of Developing Flame Fronts: Analysis with Pole Decomposition
Oleg Kupervasser, Zeev Olami and Itamar Procaccia Physical Review Letters 76 (1) 146 (1996) https://doi.org/10.1103/PhysRevLett.76.146
Multi‐valued solutions and branch point singularities for nonlinear hyperbolic or elliptic systems
Russel E. Caflisch, Nicholas Ercolani, Thomas Y. Hou and Yelena Landis Communications on Pure and Applied Mathematics 46 (4) 453 (1993) https://doi.org/10.1002/cpa.3160460402
Nonlinear Physics
D. Bessis and J. D. Fournier Research Reports in Physics, Nonlinear Physics 252 (1990) https://doi.org/10.1007/978-3-642-84148-4_27
On a Model for the Response of Unstable Premixed Flames to Turbulence
GUY JOU LIN Combustion Science and Technology 60 (1-3) 1 (1988) https://doi.org/10.1080/00102208808923972
Singularity clustering in the Duffing oscillator
J D Fournier, G Levine and M Tabor Journal of Physics A: Mathematical and General 21 (1) 33 (1988) https://doi.org/10.1088/0305-4470/21/1/014
Dynamics of Curved Fronts
O. Thual, U. Frisch and M. Hénon Dynamics of Curved Fronts 489 (1988) https://doi.org/10.1016/B978-0-08-092523-3.50049-6
Application of pole decomposition to an equation governing the dynamics of wrinkled flame fronts
O. Thual, U. Frisch and M. Hénon Journal de Physique 46 (9) 1485 (1985) https://doi.org/10.1051/jphys:019850046090148500