La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
D.J. Klein , W.A. Seitz
J. Physique Lett., 45 6 (1984) 241-247
Citations de cet article :
40 articles
Interacting semi-flexible self-avoiding walks studied on a fractal lattice
Dušanka Marčetić Physica Scripta 98 (12) 125244 (2023) https://doi.org/10.1088/1402-4896/ad0433
Semigroup theory of symmetry
Vladimir R. Rosenfeld and Thomas E. Nordahl Journal of Mathematical Chemistry 54 (9) 1758 (2016) https://doi.org/10.1007/s10910-016-0653-4
Loop-erased random walk on the Sierpinski gasket
Kumiko Hattori and Michiaki Mizuno Stochastic Processes and their Applications 124 (1) 566 (2014) https://doi.org/10.1016/j.spa.2013.08.006
Critical behavior of loops and biconnected clusters on fractals of dimensiond< 2
Dibyendu Das, Supravat Dey, Jesper Lykke Jacobsen and Deepak Dhar Journal of Physics A: Mathematical and Theoretical 41 (48) 485001 (2008) https://doi.org/10.1088/1751-8113/41/48/485001
Scaling of Hamiltonian walks on fractal lattices
Sunčica Elezović-Hadžić, Dušanka Marčetić and Slobodan Maletić Physical Review E 76 (1) (2007) https://doi.org/10.1103/PhysRevE.76.011107
Statistics of Linear Polymers in Disordered Media
Anke Ordemann, Markus Porto and H. Eduardo Roman Statistics of Linear Polymers in Disordered Media 195 (2005) https://doi.org/10.1016/B978-044451709-8/50006-2
Statistics of Linear Polymers in Disordered Media
Deepak Dhar and Yashwant Singh Statistics of Linear Polymers in Disordered Media 149 (2005) https://doi.org/10.1016/B978-044451709-8/50005-0
Diffusion in disordered media
Shlomo Havlin and Daniel Ben-Avraham Advances in Physics 51 (1) 187 (2002) https://doi.org/10.1080/00018730110116353
Self-avoiding walks on Sierpinski lattices in two and three dimensions
Anke Ordemann, Markus Porto and H. Eduardo Roman Physical Review E 65 (2) (2002) https://doi.org/10.1103/PhysRevE.65.021107
Self-avoiding walks on self-similar structures: finite versus infinite ramification
Anke Ordemann, Markus Porto and H Eduardo Roman Journal of Physics A: Mathematical and General 35 (38) 8029 (2002) https://doi.org/10.1088/0305-4470/35/38/306
Surface adsorption and collapse transition of linear polymer chains
Yashwant Singh, Sanjay Kumar and Debaprasad Giri Pramana 53 (1) 37 (1999) https://doi.org/10.1007/s12043-999-0139-z
Interpenetration and segregation of interacting polymer chains in a solution: Exact results on fractal lattices
Sanjay Kumar and Yashwant Singh Physical Review E 51 (1) 579 (1995) https://doi.org/10.1103/PhysRevE.51.579
Critical behaviour of self-avoiding walks: that cross a square
N Madras Journal of Physics A: Mathematical and General 28 (6) 1535 (1995) https://doi.org/10.1088/0305-4470/28/6/010
Transition density of diffusion on the Sierpinski gasket and extension of Flory’s formula
Tetsuya Hattori and Hideo Nakajima Physical Review E 52 (1) 1202 (1995) https://doi.org/10.1103/PhysRevE.52.1202
Surface adsorption and the collapse transition of a linear polymer chain: Some exact results on fractal lattices
Sanjay Kumar and Yashwant Singh Physical Review E 48 (2) 734 (1993) https://doi.org/10.1103/PhysRevE.48.734
Critical behaviour of two interacting linear polymer chains: exact results for a state of interpenetration of chains on a fractal lattice
S Kumar and Y Singh Journal of Physics A: Mathematical and General 26 (19) L987 (1993) https://doi.org/10.1088/0305-4470/26/19/003
Self-avoiding walks with curvature energy on fractals
A Giacometti and A Maritan Journal of Physics A: Mathematical and General 25 (10) 2753 (1992) https://doi.org/10.1088/0305-4470/25/10/007
Critical behavior of an interacting polymer chain in a porous model system: Exact results for truncated simplex lattices
Dragica Kneević, Milan Kneević and Sava Miloević Physical Review B 45 (2) 574 (1992) https://doi.org/10.1103/PhysRevB.45.574
The exponent for the mean square displacement of self-avoiding random walk on the Sierpinski gasket
Tetsuya Hattori and Shigeo Kusuoka Probability Theory and Related Fields 93 (3) 273 (1992) https://doi.org/10.1007/BF01193052
Collapse transition of linear polymers on a family of truncatedn-simplex lattices
Sanjay Kumar and Yashwant Singh Physical Review A 42 (12) 7151 (1990) https://doi.org/10.1103/PhysRevA.42.7151
Tricritical points in polymer systems
P Serra and J F Stilck Journal of Physics A: Mathematical and General 23 (22) 5351 (1990) https://doi.org/10.1088/0305-4470/23/22/022
Self-avoiding paths on the pre-Sierpinski gasket
Kumiko Hattori, Tetsuya Hattori and Shigeo Kusuoka Probability Theory and Related Fields 84 (1) 1 (1990) https://doi.org/10.1007/BF01288555
Phase transitions for polymers on fractal lattices
J. Vannimenus Physica D: Nonlinear Phenomena 38 (1-3) 351 (1989) https://doi.org/10.1016/0167-2789(89)90218-2
Tricritical points of trails, their Euler digraphs and graphs: exact results on the Sierpinski gasket
I S Chang and Y Shapir Journal of Physics A: Mathematical and General 21 (18) L903 (1988) https://doi.org/10.1088/0305-4470/21/18/007
The collapse transition of branched polymers on a fractal lattice
Dragica Knežević Physica A: Statistical Mechanics and its Applications 153 (1) 179 (1988) https://doi.org/10.1016/0378-4371(88)90110-0
Some exact results for self-avoiding random surfaces
Amos Maritan and Attilio Stella Nuclear Physics B 280 561 (1987) https://doi.org/10.1016/0550-3213(87)90162-3
Diffusion in disordered media
Shlomo Havlin and Daniel Ben-Avraham Advances in Physics 36 (6) 695 (1987) https://doi.org/10.1080/00018738700101072
The collapse transition of linear polymers on fractal lattices
D Dhar and J Vannimenus Journal of Physics A: Mathematical and General 20 (1) 199 (1987) https://doi.org/10.1088/0305-4470/20/1/028
Exact solution of a kinetic self-avoiding walk on a fractal
R M Bradley Journal of Physics A: Mathematical and General 20 (13) L821 (1987) https://doi.org/10.1088/0305-4470/20/13/003
Topological frustration and quasicompact phase in a model of interacting polymers
M Knezevic and J Vannimenus Journal of Physics A: Mathematical and General 20 (15) L969 (1987) https://doi.org/10.1088/0305-4470/20/15/007
Essential Singularity in a Model of Branched Polymers
J Vannimenus and M Knezevic Europhysics Letters (EPL) 3 (1) 21 (1987) https://doi.org/10.1209/0295-5075/3/1/004
Statistical mechanics of the travelling salesman on the Sierpinski gasket
R.M. Bradley Journal de Physique 47 (1) 9 (1986) https://doi.org/10.1051/jphys:019860047010900
Fractals in Physics
Amos MARITAN and Attilio L. STELLA Fractals in Physics 107 (1986) https://doi.org/10.1016/B978-0-444-86995-1.50020-2
Large-Scale Properties and Collapse Transition of Branched Polymers: Exact Results on Fractal Lattices
M. Kneževic and J. Vannimenus Physical Review Letters 56 (15) 1591 (1986) https://doi.org/10.1103/PhysRevLett.56.1591
Eden trees on the Sierpinski gasket
S S Manna and A K Roy Journal of Physics A: Mathematical and General 19 (15) 3195 (1986) https://doi.org/10.1088/0305-4470/19/15/040
A self-avoiding walk exponent bound on the thermal Ising exponent on some hierarchical lattices
J R Melrose Journal of Physics A: Mathematical and General 18 (1) L17 (1985) https://doi.org/10.1088/0305-4470/18/1/004
Computer generation of king and color polynomials of graphs and lattices and their applications to statistical mechanics
K. Balasubramanian and R. Ramaraj Journal of Computational Chemistry 6 (5) 447 (1985) https://doi.org/10.1002/jcc.540060513
An approximate approach to absorption correction in electron-probe microanalysis
M. Sarkar physica status solidi (a) 88 (1) K51 (1985) https://doi.org/10.1002/pssa.2210880157
Computer generation of matching polynimials of chemical graphs and lattices
Ramamani Ramaraj and K. Balasubramanian Journal of Computational Chemistry 6 (2) 122 (1985) https://doi.org/10.1002/jcc.540060207
Physics of Finely Divided Matter
J. Vannimenus Springer Proceedings in Physics, Physics of Finely Divided Matter 5 317 (1985) https://doi.org/10.1007/978-3-642-93301-1_38