Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

A magnetic falling-sphere viscometer

C. Patramanis-Thalassinakis, P. S. Karavelas and I. K. Kominis
Journal of Applied Physics 134 (16) (2023)
https://doi.org/10.1063/5.0160731

An error analysis of a rheological study of magnetic nanofluids on a rotational viscometer

A N Bolotov, V V Novikov and O O Novikova
Journal of Physics: Conference Series 2373 (2) 022014 (2022)
https://doi.org/10.1088/1742-6596/2373/2/022014

Rotational dynamics of magnetic nanoparticles in different matrix systems

Frank Ludwig and Hilke Remmer
Physical Sciences Reviews 7 (9) 981 (2022)
https://doi.org/10.1515/psr-2019-0115

Dynamic magnetic birefringence in a viscoelastic ferrocolloid

V. V. Rusakov and Y. L. Raikher
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380 (2217) (2022)
https://doi.org/10.1098/rsta.2020.0311

Water-based ferrofluid flow and heat transfer over a stretchable rotating disk under the influence of an alternating magnetic field

Anupam Bhandari
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 235 (12) 2201 (2021)
https://doi.org/10.1177/0954406220952515

Structural, Thermodiffusive and Thermoelectric Properties of Maghemite Nanoparticles Dispersed in Ethylammonium Nitrate

Kakoli Bhattacharya, Mitradeep Sarkar, Thomas J. Salez, Sawako Nakamae, Gilles Demouchy, Fabrice Cousin, Emmanuelle Dubois, Laurent Michot, Régine Perzynski and Véronique Peyre
ChemEngineering 4 (1) 5 (2020)
https://doi.org/10.3390/chemengineering4010005

Dynamics of magnetic nanoparticles in viscoelastic media

Hilke Remmer, Eric Roeben, Annette M. Schmidt, Meinhard Schilling and Frank Ludwig
Journal of Magnetism and Magnetic Materials 427 331 (2017)
https://doi.org/10.1016/j.jmmm.2016.10.075

Magnetic response of gelatin ferrogels across the sol–gel transition: the influence of high energy crosslinking on thermal stability

Emilia I. Wisotzki, Dietmar Eberbeck, Harald Kratz and Stefan G. Mayr
Soft Matter 12 (17) 3908 (2016)
https://doi.org/10.1039/C5SM02695D

Dekker Encyclopedia of Nanoscience and Nanotechnology, Third Edition

Valérie Cabuil
Dekker Encyclopedia of Nanoscience and Nanotechnology, Third Edition 2245 (2014)
https://doi.org/10.1081/E-ENN3-120009226

Theoretical prerequisites for magnetodynamical determination of the viscoelastic properties of a fluid

S. B. Kashevskii
Journal of Engineering Physics and Thermophysics 86 (5) 1127 (2013)
https://doi.org/10.1007/s10891-013-0935-7

Development and validation of a 10 kHz–1 MHz magnetic susceptometer with constant excitation field

Javier Tafur, Adriana P. Herrera, Carlos Rinaldi and Eduardo J. Juan
Journal of Applied Physics 111 (7) (2012)
https://doi.org/10.1063/1.3680200

MAGNETODYNAMICS OF A SUSPENSION OF HIGH-COERCIVITY FERROPARTICLES IN A SUBCRITICAL AC FIELD

B. E. KASHEVSKY, S. B. KASHEVSKY and I. V. PROKHOROV
International Journal of Modern Physics B 25 (08) 1161 (2011)
https://doi.org/10.1142/S0217979211058559

Rotational diffusion of magnetic nickel nanorods in colloidal dispersions

A Günther, P Bender, A Tschöpe and R Birringer
Journal of Physics: Condensed Matter 23 (32) 325103 (2011)
https://doi.org/10.1088/0953-8984/23/32/325103

Quantitative nanoscale viscosity measurements using magnetic nanoparticles and SQUID AC susceptibility measurements

Victoria L. Calero-DdelC, Darlene I. Santiago-Quiñonez and Carlos Rinaldi
Soft Matter 7 (9) 4497 (2011)
https://doi.org/10.1039/c0sm00902d

Monitoring gelation using magnetic nanoparticles

Carola Barrera, Vivian Florián-Algarin, Aldo Acevedo and Carlos Rinaldi
Soft Matter 6 (15) 3662 (2010)
https://doi.org/10.1039/c003284k

Relaxation of the field-induced structural anisotropy in a rotating magnetic fluid

E. Wandersman, E. Dubois, F. Cousin, et al.
EPL (Europhysics Letters) 86 (1) 10005 (2009)
https://doi.org/10.1209/0295-5075/86/10005

Brownian dynamics investigation of magnetization and birefringence relaxations in ferrofluids

G. Mériguet, M. Jardat and P. Turq
The Journal of Chemical Physics 123 (14) (2005)
https://doi.org/10.1063/1.2056551

Structural properties of charge-stabilized ferrofluids under a magnetic field: A Brownian dynamics study

G. Mériguet, M. Jardat and P. Turq
The Journal of Chemical Physics 121 (12) 6078 (2004)
https://doi.org/10.1063/1.1784434

Theoretical Prerequisites for One Magnetooptical Method of Measurement of the Viscosity of a Fluid

S. B. Kashevskii
Journal of Engineering Physics and Thermophysics 76 (2) 238 (2003)
https://doi.org/10.1023/A:1023628528883

Designing magnetic composite materials using aqueous magnetic fluids

Jos  Alberto Galicia, Olivier Sandre, Fabrice Cousin, et al.
Journal of Physics: Condensed Matter 15 (15) S1379 (2003)
https://doi.org/10.1088/0953-8984/15/15/306

Local rheological probes for complex fluids: Application to Laponite suspensions

C. Wilhelm, F. Elias, J. Browaeys, A. Ponton and J.-C. Bacri
Physical Review E 66 (2) (2002)
https://doi.org/10.1103/PhysRevE.66.021502

Time Scaling Regimes in Aggregation of Magnetic Dipolar Particles: Scattering Dichroism Results

Sonia Melle, Miguel A. Rubio and Gerald G. Fuller
Physical Review Letters 87 (11) (2001)
https://doi.org/10.1103/PhysRevLett.87.115501

Time dependence of the magnetic grain concentration and secondary grain aggregation in ferronematic lyotropic liquid crystals subjected to magnetic field gradients

C. Y. Matuo and A. M. Figueiredo Neto
Physical Review E 60 (2) 1815 (1999)
https://doi.org/10.1103/PhysRevE.60.1815

Comparison between a magneto-optical method and Fannin's technique for the measurement of Brown's relaxation frequency of ferrofluids

B. Payet, A. Siblini, M.F. Blanc-Mignon and G. Noyel
IEEE Transactions on Magnetics 35 (3) 2018 (1999)
https://doi.org/10.1109/20.764903

Two-dimensional magnetic liquid froth: Coarsening and topological correlations

Florence Elias, Cyrille Flament, Jean-Claude Bacri, Olivier Cardoso and François Graner
Physical Review E 56 (3) 3310 (1997)
https://doi.org/10.1103/PhysRevE.56.3310

Magnetic fluid under vorticity: Free precession decay of magnetization and optical anisotropy

F. Gazeau, B. M. Heegaard, J.-C. Bacri, A. Cebers and R. Perzynski
Physical Review E 54 (4) 3672 (1996)
https://doi.org/10.1103/PhysRevE.54.3672

Molecular-optical viscometer based on fluorescence depolarization

Angela M. Williams and Dor. Ben-Amotz
Analytical Chemistry 64 (6) 700 (1992)
https://doi.org/10.1021/ac00030a025

Phase diagram of an ionic magnetic colloid: Experimental study of the effect of ionic strength

J.-C Bacri, R Perzynski, V Cabuil and R Massart
Journal of Colloid and Interface Science 132 (1) 43 (1989)
https://doi.org/10.1016/0021-9797(89)90214-2

Biophysical Effects of Steady Magnetic Fields

J. C. Bacri, R. Perzynski, D. Salin, et al.
Springer Proceedings in Physics, Biophysical Effects of Steady Magnetic Fields 11 59 (1986)
https://doi.org/10.1007/978-3-642-71526-6_11