The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
R. Delaplace , Ph. Molinie , D. Jerome
J. Physique Lett., 37 1 (1976) 13-15
This article has been cited by the following article(s):
36 articles
Study of charge density waves in suspended 2H-TaS2 and 2H-TaSe2 by nanomechanical resonance
Martin Lee, Makars Šiškins, Samuel Mañas-Valero, et al. Applied Physics Letters 118 (19) (2021) https://doi.org/10.1063/5.0051112
Superconductivity and charge density wave formation in lithium-intercalated
2H−TaS2
Huanlong Liu, Shangxiong Huangfu, Xiaofu Zhang, Hai Lin and Andreas Schilling Physical Review B 104 (6) (2021) https://doi.org/10.1103/PhysRevB.104.064511
Pressure effects on the lattice vibrations and ultrafast photocarrier dynamics in 2H–TaS2
Kai Zhang, Huachao Jiang, Jin Yang, et al. Applied Physics Letters 117 (10) (2020) https://doi.org/10.1063/5.0018615
Coexistence of Superconductivity and Charge Density Waves in Tantalum Disulfide: Experiment and Theory
Y. Kvashnin, D. VanGennep, M. Mito, et al. Physical Review Letters 125 (18) (2020) https://doi.org/10.1103/PhysRevLett.125.186401
2H→1T Phase Engineering of Layered Tantalum Disulfides in Electrocatalysis: Oxygen Reduction Reaction
Jan Luxa, Vlastimil Mazánek, Martin Pumera, et al. Chemistry – A European Journal 23 (33) 8082 (2017) https://doi.org/10.1002/chem.201701494
Strong enhancement of superconductivity at high pressures within the charge-density-wave states of2H−TaS2and2H−TaSe2
D. C. Freitas, P. Rodière, M. R. Osorio, et al. Physical Review B 93 (18) (2016) https://doi.org/10.1103/PhysRevB.93.184512
Multiple electronic transitions and superconductivity inPdxTiSe2
E. Morosan, K. E. Wagner, Liang L. Zhao, et al. Physical Review B 81 (9) (2010) https://doi.org/10.1103/PhysRevB.81.094524
O (without cuprates) - Sc
R. Flükiger and T. Wolf Landolt-Börnstein - Group III Condensed Matter, O (without cuprates) - Sc 21c 249 (1997) https://doi.org/10.1007/10039962_32
Superconductivity and Density Waves in High Dimensions
S Ciuchi, F. de Pasquale, C Masciovecchio and D Feinberg Europhysics Letters (EPL) 24 (7) 575 (1993) https://doi.org/10.1209/0295-5075/24/7/012
Crystal structures and properties of superconducting materials I
Kyoichi Kinoshita Phase Transitions 23 (2-4) 73 (1990) https://doi.org/10.1080/01411599008241820
Pressure dependence of the charge-density wave of sodium molybdenum purple bronze
H Fujishita, C Murayama, N Mori and M Sato Journal of Physics: Condensed Matter 2 (44) 8751 (1990) https://doi.org/10.1088/0953-8984/2/44/003
Low-Dimensional Electronic Properties of Molybdenum Bronzes and Oxides
Martha Greenblatt Physics and Chemistry of Materials with Low-Dimensional Structures, Low-Dimensional Electronic Properties of Molybdenum Bronzes and Oxides 11 1 (1989) https://doi.org/10.1007/978-94-009-0447-7_1
Charge Density Waves in Solids
Jean ROUXEL and Claire SCHLENKER Modern Problems in Condensed Matter Sciences, Charge Density Waves in Solids 25 15 (1989) https://doi.org/10.1016/B978-0-444-87370-5.50007-3
Electronic properties of intercalation complexes of the transition metal dichalcogenides
R.H. Friend and A.D. Yoffe Advances in Physics 36 (1) 1 (1987) https://doi.org/10.1080/00018738700101951
Unit-sphere description of nematic flows
Tomas Carlsson Physical Review A 34 (4) 3393 (1986) https://doi.org/10.1103/PhysRevA.34.3393
Crystal Chemistry and Properties of Materials with Quasi-One-Dimensional Structures
Alain Meerschaut and Jean Rouxel Crystal Chemistry and Properties of Materials with Quasi-One-Dimensional Structures 205 (1986) https://doi.org/10.1007/978-94-009-4528-9_6
Charge density wave transition and superconductivity in 2H-NbSe2. Direct measurement of the penetration depth in a layered superconductor
K. Takita and K. Masuda Journal of Low Temperature Physics 58 (1-2) 127 (1985) https://doi.org/10.1007/BF00682569
Lattice Vibrations in the Charge‐Density‐Wave States of Layered Transition Metal Dichalcogenides
S. Sugai physica status solidi (b) 129 (1) 13 (1985) https://doi.org/10.1002/pssb.2221290103
Electronic transition under pressure in the two-dimensional purple bronze K0.9Mo6O17
J. Dumas, C. Escribe-Filippini, J. Marcus, et al. Physica B+C 117-118 602 (1983) https://doi.org/10.1016/0378-4363(83)90600-9
Studies of lattice dynamics in 2HTaS2 by Raman scattering
S. Sugai, K. Murase, S. Uchida and S. Tanaka Solid State Communications 40 (4) 399 (1981) https://doi.org/10.1016/0038-1098(81)90847-4
A Study of Flow Alignment Instability During Rectilinear Oscillatory Shear of Nematics
M. G. Clark, F. C. Saunders, I. A. Shanks and F. M. Leslie Molecular Crystals and Liquid Crystals 70 (1) 195 (1981) https://doi.org/10.1080/00268948108073590
Structural transitions in layer crystals under hydrostatic compression
B.A. Lukjanets and K.D. Tovstyuk Solid State Communications 38 (7) 603 (1981) https://doi.org/10.1016/0038-1098(81)90949-2
Intercalated Layered Materials
J. Rouxel Intercalated Layered Materials 201 (1979) https://doi.org/10.1007/978-94-009-9415-7_4
Intercalated Layered Materials
G. V. Subba Rao and M. W. Shafer Intercalated Layered Materials 99 (1979) https://doi.org/10.1007/978-94-009-9415-7_3
Periodic lattice distortions and charge density waves in one- and two-dimensional metals
R H Friend and D Jerome Journal of Physics C: Solid State Physics 12 (8) 1441 (1979) https://doi.org/10.1088/0022-3719/12/8/009
Hall coefficient of TaS2-xSexlayer compounds
G K Bristow, C A Cornelius, T F Smith and T R Finlayson Journal of Physics F: Metal Physics 8 (10) 2165 (1978) https://doi.org/10.1088/0305-4608/8/10/016
High-Pressure and Low-Temperature Physics
C. W. Chu High-Pressure and Low-Temperature Physics 359 (1978) https://doi.org/10.1007/978-1-4684-3351-7_23
The effect of pressure on the charge density wave transitions in 4H b TaS2
R. H. Friend, R. F. Frindt, D. Jérome and A. J. Grant Il Nuovo Cimento B Series 11 38 (2) 554 (1977) https://doi.org/10.1007/BF02723531
Charge density waves effects on the phonon modes of 1T-TaS2
G.A. Sai-Halasz and P.B. Perry Solid State Communications 21 (11) 995 (1977) https://doi.org/10.1016/0038-1098(77)90003-5
Developments in high pressure physics
G. D. Pitt Contemporary Physics 18 (2) 137 (1977) https://doi.org/10.1080/00107517708231477
Anomalous transport properties of a linear-chain metal: NbSe3
N. P. Ong and Pierre Monceau Physical Review B 16 (8) 3443 (1977) https://doi.org/10.1103/PhysRevB.16.3443
Electrical conductivity and charge density wave formation in 4HbTaS2under pressure
R H Friend, R F Frindt, A J Grant, A D Yoffe and D Jerome Journal of Physics C: Solid State Physics 10 (7) 1013 (1977) https://doi.org/10.1088/0022-3719/10/7/011
Phase transitions in NbSe3
J. Chaussy, P. Haen, J.C. Lasjaunias, et al. Solid State Communications 20 (8) 759 (1976) https://doi.org/10.1016/0038-1098(76)90289-1
Optical and Electrical Properties
R. F. Frindt and D. J. Huntley Optical and Electrical Properties 403 (1976) https://doi.org/10.1007/978-94-010-1478-6_7
Evidence for a connection between charge density waves and the pressure enhancement of superconductivity in 2H-NbSe2
C. Berthier, P. Molinié and D. Jérome Solid State Communications 18 (9-10) 1393 (1976) https://doi.org/10.1016/0038-1098(76)90986-8
Electric Field Breakdown of Charge-Density-Wave—Induced Anomalies in NbSe3
P. Monçeau, N. P. Ong, A. M. Portis, A. Meerschaut and J. Rouxel Physical Review Letters 37 (10) 602 (1976) https://doi.org/10.1103/PhysRevLett.37.602