La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
U. Benedict , G.D. Andreetti , J.M. Fournier , A. Waintal
J. Physique Lett., 43 6 (1982) 171-177
Citations de cet article :
53 articles
Density Functional Theory Calculations of Nuclear Material Properties in the Creation of a Closed Fuel Cycle: A Short Review
Alexander Y. Galashev Energy Material Advances 6 (2025) https://doi.org/10.34133/energymatadv.0179
Balmukund Shukla, Dasarath Maji, Sanjay Kumar N. R., Balakrishnan S and Anuj Upadhyay (2025) https://doi.org/10.2139/ssrn.5244204
Crystal structure and magnetism of actinide oxides: a review
Binod K Rai, Alex Bretaña, Gregory Morrison, Rosalie Greer, Krzysztof Gofryk and Hans-Conrad zur Loye Reports on Progress in Physics 87 (6) 066501 (2024) https://doi.org/10.1088/1361-6633/ad38cb
Pressure-induced phase transition, its mechanism and compressibility studies on nanocrystalline and bulk U3O8
Balmukund Shukla, N.R. Sanjay Kumar, Dasarath Maji, et al. Journal of Solid State Chemistry 328 124340 (2023) https://doi.org/10.1016/j.jssc.2023.124340
High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure
Yoshiyuki Kawazoe, Takeshi Kanomata and Ryunosuke Note High Pressure Materials Properties: Magnetic Properties of Oxides Under Pressure 55 (2023) https://doi.org/10.1007/978-3-662-64593-2_10
Systematic investigation of electronic, mechanical and optical properties of UO2 at higher pressure: A DFT+U+SOC study
Shilpa Singh, Yogesh Sonvane, K.A. Nekrasov, A.S. Boyarchenkov, A. Ya. Kupryazhkin, P.N. Gajjar and Sanjeev K. Gupta Solid State Sciences 132 106968 (2022) https://doi.org/10.1016/j.solidstatesciences.2022.106968
High pressure structural stability of UO2 by evolutionary algorithm
D Sornadurai Bulletin of Materials Science 45 (4) (2022) https://doi.org/10.1007/s12034-022-02819-w
Systematic Investigation of Electronic, Mechanical and Optical Properties of Uo2 at Higher Pressure: A Dft+U+Soc Study
Shilpa Singh, Yogesh Sonvane, K. A. Nekrasov, et al. SSRN Electronic Journal (2022) https://doi.org/10.2139/ssrn.4124473
Pressure-induced structural and electronic phase transitions of uranium trioxide
Jiang-Jiang Ma, Cheng-Bin Zhang, Ruizhi Qiu, et al. Physical Review B 104 (17) (2021) https://doi.org/10.1103/PhysRevB.104.174103
A universal COMB potential for the whole composition range of the uranium oxygen system
Yangzhong Li Journal of Nuclear Materials (2018) https://doi.org/10.1016/j.jnucmat.2018.10.043
Structure and bulk modulus of Ln-doped UO2 (Ln = La, Nd) at high pressure
Dylan R. Rittman, Sulgiye Park, Cameron L. Tracy, Lei Zhang, Raul I. Palomares, Maik Lang, Alexandra Navrotsky, Wendy L. Mao and Rodney C. Ewing Journal of Nuclear Materials 490 28 (2017) https://doi.org/10.1016/j.jnucmat.2017.04.007
Electronic transport in pure and doped UO 2
A.R. Massih Journal of Nuclear Materials 497 166 (2017) https://doi.org/10.1016/j.jnucmat.2017.07.035
Ground state properties of actinide dioxides: A self-consistent Hubbard U approach with spin orbit coupling
A. Bouasria, A. Zaoui, S. Ait Abderrahmane, et al. International Journal of Computational Materials Science and Engineering 06 (01) 1750006 (2017) https://doi.org/10.1142/S2047684117500063
A combined theoretical and experimental investigation of uranium dioxide under high static pressure
J C Crowhurst, J R Jeffries, D Åberg, et al. Journal of Physics: Condensed Matter 27 (26) 265401 (2015) https://doi.org/10.1088/0953-8984/27/26/265401
GGA+U study on phase transition, optoelectronic and magnetic properties of AmO2 with spin–orbit coupling
A. Bendjedid, T. Seddik, R. Khenata, et al. Journal of Magnetism and Magnetic Materials 396 190 (2015) https://doi.org/10.1016/j.jmmm.2015.08.020
Origin of
f
-orbital-bonding insensitivity to spin-orbit coupling in UO
2
Bo Gyu Jang, Seung Ill Hyun, Moo Hwan Kim, Massoud Kaviany and Ji Hoon Shim EPL (Europhysics Letters) 112 (1) 17012 (2015) https://doi.org/10.1209/0295-5075/112/17012
Effect of pressure on f-electron delocalization and oxidation in actinide dioxides
L. Petit, Z. Szotek, W.M. Temmerman, G.M. Stocks and A. Svane Journal of Nuclear Materials 451 (1-3) 313 (2014) https://doi.org/10.1016/j.jnucmat.2014.03.057
Electronic and mechanical properties of ordered (Pu, U) O2 compounds: A density functional theory +U study
Yu Yang, Baotian Wang and Ping Zhang Journal of Nuclear Materials 433 (1-3) 345 (2013) https://doi.org/10.1016/j.jnucmat.2012.10.027
Advances in first-principles modelling of point defects in UO2: f electron correlations and the issue of local energy minima
B Dorado, M Freyss, B Amadon, et al. Journal of Physics: Condensed Matter 25 (33) 333201 (2013) https://doi.org/10.1088/0953-8984/25/33/333201
Electronic structure and stability of hyperstoichiometric UO2+xunder pressure
Jianwei Wang, Rodney C. Ewing and Udo Becker Physical Review B 88 (2) (2013) https://doi.org/10.1103/PhysRevB.88.024109
Activation energetics of actinide diffusion in UO2 from first-principles calculations
Jianwei Wang and Udo Becker Journal of Nuclear Materials 433 (1-3) 424 (2013) https://doi.org/10.1016/j.jnucmat.2012.10.011
Anomalous bulk compression behaviour in a hyperstoichiometric uranium-dioxide–thorium-dioxide solid solution
O Tschauner, C Ma, O Grubor-Urosevic and Y J Chen Journal of Physics: Condensed Matter 25 (16) 162201 (2013) https://doi.org/10.1088/0953-8984/25/16/162201
Phonon spectrum, thermal expansion and heat capacity of UO2 from first-principles
Younsuk Yun, Dominik Legut and Peter M. Oppeneer Journal of Nuclear Materials 426 (1-3) 109 (2012) https://doi.org/10.1016/j.jnucmat.2012.03.017
Pressure-induced group-subgroup phase transitions and post-cotunnite phases in actinide dioxides
Hong X. Song, Hua Y. Geng and Q. Wu Physical Review B 85 (6) (2012) https://doi.org/10.1103/PhysRevB.85.064110
Calculation of heat capacity of the nuclear fuels UO2 and NpO2 using integer and non-integer n-dimensional Debye functions
H. Koç, E. Eser and B.A. Mamedov Nuclear Engineering and Design 241 (9) 3678 (2011) https://doi.org/10.1016/j.nucengdes.2011.07.020
Equilibrium and nonequilibrium molecular dynamics simulations of heat conduction in uranium oxide and mixed uranium–plutonium oxide
Tatsumi Arima, Sho Yamasaki, Kazuya Idemitsu and Yaohiro Inagaki Journal of Nuclear Materials 376 (2) 139 (2008) https://doi.org/10.1016/j.jnucmat.2008.02.067
Coupling of multi-LO phonons to crystal-field excitations in UO2studied by Raman spectroscopy
Tsachi Livneh Journal of Physics: Condensed Matter 20 (8) 085202 (2008) https://doi.org/10.1088/0953-8984/20/8/085202
Structural behavior of uranium dioxide under pressure byLSDA+Ucalculations
H. Y. Geng, Y. Chen, Y. Kaneta and M. Kinoshita Physical Review B 75 (5) (2007) https://doi.org/10.1103/PhysRevB.75.054111
Effect of pressure on the resonant multiphonon Raman scattering inUO2
Tsachi Livneh and Eran Sterer Physical Review B 73 (8) (2006) https://doi.org/10.1103/PhysRevB.73.085118
Compressibility of highly coordinated metal oxynitrides: LDA calculations
J. E. Lowther Physical Review B 72 (17) (2005) https://doi.org/10.1103/PhysRevB.72.172105
Phase transitions in uranium dioxide at high pressures and temperatures
A. M. Molodets and V. E. Fortov Journal of Experimental and Theoretical Physics Letters 80 (3) 172 (2004) https://doi.org/10.1134/1.1808844
Behavior of actinide dioxides under pressure: UO2andThO2
M. Idiri, T. Le Bihan, S. Heathman and J. Rebizant Physical Review B 70 (1) (2004) https://doi.org/10.1103/PhysRevB.70.014113
Density-functional study of water adsorption on thePuO2(110)surface
Xueyuan Wu and Asok K. Ray Physical Review B 65 (8) (2002) https://doi.org/10.1103/PhysRevB.65.085403
A hybrid-density functional cluster study of the bulk and surface electronic structures of PuO2
Xueyuan Wu and Asok K. Ray Physica B: Condensed Matter 301 (3-4) 359 (2001) https://doi.org/10.1016/S0921-4526(00)00763-8
Highly coordinated metal dioxides in the cotunnite structure
J. K. Dewhurst and J. E. Lowther Physical Review B 64 (1) (2001) https://doi.org/10.1103/PhysRevB.64.014104
All-electron LCGTO calculations for uranium dioxide
J. C. Boettger and A. K. Ray International Journal of Quantum Chemistry 80 (4-5) 824 (2000) https://doi.org/10.1002/1097-461X(2000)80:4/5<824::AID-QUA30>3.0.CO;2-Z
Binary Actinide Oxides
R. Troc and D. Kaczorowski Landolt-Börnstein - Group III Condensed Matter, Binary Actinide Oxides 27C2 17 (1999) https://doi.org/10.1007/10551574_9
Binary Actinide Oxides
R. Troc and D. Kaczorowski Landolt-Börnstein - Group III Condensed Matter, Binary Actinide Oxides 27C2 101 (1999) https://doi.org/10.1007/10551574_15
Binary Actinide Oxides
R. Troc and D. Kaczorowski Landolt-Börnstein - Group III Condensed Matter, Binary Actinide Oxides 27C2 213 (1999) https://doi.org/10.1007/10551574_23
High-pressure crystal structure of thorium disulfide and diselenide and uranium disulfide
L. Gerward, J. Staun Olsen, U. Benedict, H. C. Abraham and F. Hulliger High Pressure Research 13 (6) 327 (1995) https://doi.org/10.1080/08957959508202585
Structural and physical properties of actinide materials at high pressure
U. Benedict Journal of Alloys and Compounds 213-214 153 (1994) https://doi.org/10.1016/0925-8388(94)90896-6
Powder diffraction analysis of cerium dioxide at high pressure
L. Gerward and J. Staun Olsen Powder Diffraction 8 (2) 127 (1993) https://doi.org/10.1017/S0885715600017966
Lanthanides/Actinides: Physics I
U. Benedict and W.B. Holzapfel Handbook on the Physics and Chemistry of Rare Earths, Lanthanides/Actinides: Physics I 17 245 (1993) https://doi.org/10.1016/S0168-1273(05)80030-3
Actinide compounds under pressure
U Benedict, S Dabos-Seignon, J.P Dancausse, et al. Journal of Alloys and Compounds 181 (1-2) 1 (1992) https://doi.org/10.1016/0925-8388(92)90292-H
Pressure-induced phase transition in ThO2and PuO2
J.-P. Dancausse, E. Gering, S. Heathman and U. Benedict High Pressure Research 2 (5-6) 381 (1990) https://doi.org/10.1080/08957959008203190
The role of the extended defects on the physical properties of electronic ceramics
S. Pizzini Materials Chemistry and Physics 23 (4) 349 (1989) https://doi.org/10.1016/0254-0584(89)90079-5
High-pressure x-ray diffraction study ofCeO2to 70 GPa and pressure-induced phase transformation from the fluorite structure
Steven J. Duclos, Yogesh K. Vohra, Arthur L. Ruoff, A. Jayaraman and G. P. Espinosa Physical Review B 38 (11) 7755 (1988) https://doi.org/10.1103/PhysRevB.38.7755
On diffusion and precipitation of gas-in-solid
C. Ronchi Journal of Nuclear Materials 148 (3) 316 (1987) https://doi.org/10.1016/0022-3115(87)90025-0
Influence of the excitation frequency on surface wave argon discharges: Study of the light emission
C. Boisse-Laporte, A. Granier, E. Bloyet, P. Leprince and J. Marec Journal of Applied Physics 61 (5) 1740 (1987) https://doi.org/10.1063/1.338071
Grain-boundary space-charge conduction
Herbert F. Mataré Journal of Applied Physics 59 (1) 97 (1986) https://doi.org/10.1063/1.336846
Neptunium compounds under high pressure
U Benedict, S Dabos, C Dufour, J.C Spirlet and M Pagès Journal of the Less Common Metals 121 461 (1986) https://doi.org/10.1016/0022-5088(86)90563-1
Effects of heat treatment on the composition and semiconductivity of electrochemically deposited CdTe films
Makoto Takahashi, Kohei Uosaki, Hideaki Kita and Yoshikazu Suzuki Journal of Applied Physics 58 (11) 4292 (1985) https://doi.org/10.1063/1.335514
Study of actinide metals and actinide compounds under high pressures
U. Benedict Journal of the Less Common Metals 100 153 (1984) https://doi.org/10.1016/0022-5088(84)90061-4