Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Gel-sol transition of thermoresponsive poly(vinyl alcohol) solution: Validation of the universal critical scaling relations

Tulika Bhattacharyya, Khushboo Suman and Yogesh M. Joshi
Physics of Fluids 35 (2) (2023)
https://doi.org/10.1063/5.0137753

Input‐output finite‐time stability of fractional‐order switched singular continuous‐time systems

Tian Feng, Baowei Wu, Yue‐E Wang and Lili Liu
Asian Journal of Control 23 (2) 1052 (2021)
https://doi.org/10.1002/asjc.2288

On the universality of the scaling relations during sol-gel transition

Khushboo Suman and Yogesh M. Joshi
Journal of Rheology 64 (4) 863 (2020)
https://doi.org/10.1122/1.5134115

Finite-Time Stability and Stabilization of Fractional-Order Switched Singular Continuous-Time Systems

Tian Feng, Baowei Wu, Lili Liu and Yue-E Wang
Circuits, Systems, and Signal Processing 38 (12) 5528 (2019)
https://doi.org/10.1007/s00034-019-01159-1

Approximation of the frequency response of power systems based on scale invariance

Thi-Tinh-Minh Le and Nicolas Retiere
Mathematics and Computers in Simulation 131 157 (2017)
https://doi.org/10.1016/j.matcom.2015.08.015

Fractional-step Tow-Thomas biquad filters

Todd J. Freeborn, Brent Maundy and Ahmed Elwakil
Nonlinear Theory and Its Applications, IEICE 3 (3) 357 (2012)
https://doi.org/10.1587/nolta.3.357

Fractional Calculus for Scientists and Engineers

Manuel Duarte Ortigueira
Lecture Notes in Electrical Engineering, Fractional Calculus for Scientists and Engineers 84 71 (2011)
https://doi.org/10.1007/978-94-007-0747-4_4

Fractional derivatives: Probability interpretation and frequency response of rational approximations

J.A. Tenreiro Machado
Communications in Nonlinear Science and Numerical Simulation 14 (9-10) 3492 (2009)
https://doi.org/10.1016/j.cnsns.2009.02.004

An introduction to the fractional continuous-time linear systems: the 21st century systems

Manuel Ortigueira
IEEE Circuits and Systems Magazine 8 (3) 19 (2008)
https://doi.org/10.1109/MCAS.2008.928419

Broadband Complex Dielectric Permittivity of Porous Aluminum Silicate–Pyrolytic Carbon Composites

Jeffrey P. Calame, David K. Abe, Baruch Levush and David Lobas
Journal of the American Ceramic Society 88 (8) 2133 (2005)
https://doi.org/10.1111/j.1551-2916.2005.00435.x

Regeneration of thixotropic magnetic gels studied by mechanical spectroscopy: the effect of the pH

A Ponton, A Bee, D Talbot and R Perzynski
Journal of Physics: Condensed Matter 17 (6) 821 (2005)
https://doi.org/10.1088/0953-8984/17/6/004

Evolution of Davidson–Cole relaxation behavior in random conductor–insulator composites

J. P. Calame
Journal of Applied Physics 94 (9) 5945 (2003)
https://doi.org/10.1063/1.1615302

Diffusion phenomenon modelling by half-order systems: application to squirrel-cage induction machine

Delphine Riu, Nicolas Retière and Marcel Ivanès
Journal of Magnetism and Magnetic Materials 242-245 1243 (2002)
https://doi.org/10.1016/S0304-8853(01)01198-2

Generalised approach on fractional response of fractal networks

C. Ramus-Serment, X. Moreau, M. Nouillant, A. Oustaloup and F. Levron
Chaos, Solitons & Fractals 14 (3) 479 (2002)
https://doi.org/10.1016/S0960-0779(01)00223-5

Introduction to fractional linear systems. Part 1: Continuous-time case

M.D. Ortigueira
IEE Proceedings - Vision, Image, and Signal Processing 147 (1) 62 (2000)
https://doi.org/10.1049/ip-vis:20000272

The frequency response of a fractal photolithographic structure

T.C. Haba, G. Ablart and T. Camps
IEEE Transactions on Dielectrics and Electrical Insulation 4 (3) 321 (1997)
https://doi.org/10.1109/94.598289

Dynamic viscoelasticity and critical exponents in sol-gel transition of an end-linking polymer

Masaoki Takahashi, Kuniaki Yokoyama, Toshiro Masuda and Toshikazu Takigawa
The Journal of Chemical Physics 101 (1) 798 (1994)
https://doi.org/10.1063/1.468135

Measurement of AC conductance, and minima in loss tangent, of random conductor-insulator mixtures

R K Chakrabarty, K K Bardhan and A Basu
Journal of Physics: Condensed Matter 5 (15) 2377 (1993)
https://doi.org/10.1088/0953-8984/5/15/009

Analysis of porous media heterogeneities using the diffusion of pressure waves

P. Rigord, Y. Caristan and J. P. Hulin
Journal of Geophysical Research: Solid Earth 98 (B6) 9781 (1993)
https://doi.org/10.1029/92JB02695

Effective Medium Theory For Microwave Dielectric Constant and Magnetic Permeability of Conducting Stick Composites

A.N. Lagarkov, A.K. Sarychev, Y.R. Smychkovich and A.P. Vinogradov
Journal of Electromagnetic Waves and Applications 6 (9) 1159 (1992)
https://doi.org/10.1163/156939392X00661

Effective Medium Theory For Microwave Dielectric Constant and Magnetic Permeability of Conducting Stick Composites

A.N. Lagarkov, A.K. Sarychev, Y.R. Smychkovich and A.P. Vinogradov
Journal of Electromagnetic Waves and Applications 6 (7) 1159 (1992)
https://doi.org/10.1163/156939392X01697

Dielectric Relaxation as a Cooperative Process

M. Massalska-Arodź
Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 214 (1) 171 (1992)
https://doi.org/10.1080/10587259208037291

Fractal-like scaling in liquid crystals. Odd–even effect of scaling exponents in the 4,4′-di-n-alkyloxyazoxybenzene homologous series

Maria Massalska-Arodź and Jerzy A. Janik
Liquid Crystals 10 (1) 135 (1991)
https://doi.org/10.1080/02678299108028237

Strongly disordered chain of impedances: theoretical analysis and numerical results

J P Hulin, J P Bouchaud and A Georges
Journal of Physics A: Mathematical and General 23 (7) 1085 (1990)
https://doi.org/10.1088/0305-4470/23/7/015

The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models

J.P. Clerc, G. Giraud, J.M. Laugier and J.M. Luck
Advances in Physics 39 (3) 191 (1990)
https://doi.org/10.1080/00018739000101501

Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications

Jean-Philippe Bouchaud and Antoine Georges
Physics Reports 195 (4-5) 127 (1990)
https://doi.org/10.1016/0370-1573(90)90099-N

Fractals and percolation in porous media and flows?

Etienne Guyon, Catalin D. Mitescu, Jean-Pierre Hulin and Stéphane Roux
Physica D: Nonlinear Phenomena 38 (1-3) 172 (1989)
https://doi.org/10.1016/0167-2789(89)90187-5

Correlation and clustering in the optical properties of composites: A numerical study

X. C. Zeng, P. M. Hui, D. J. Bergman and D. Stroud
Physical Review B 39 (18) 13224 (1989)
https://doi.org/10.1103/PhysRevB.39.13224

Fractal aspects of the dielectric response of charge carriers in disordered materials

G. A. Niklasson
Journal of Applied Physics 62 (7) R1 (1987)
https://doi.org/10.1063/1.339355

Frequency Dependence of Viscoelastic Properties of Branched Polymers near Gelation Threshold

D Durand, M Delsanti, M Adam and J. M Luck
Europhysics Letters (EPL) 3 (3) 297 (1987)
https://doi.org/10.1209/0295-5075/3/3/008

ac response near the percolation threshold: Transfer-matrix results in two and three dimensions

A. L. R. Bug, Gary S. Grest, Morrel H. Cohen and Itzhak Webman
Physical Review B 36 (7) 3675 (1987)
https://doi.org/10.1103/PhysRevB.36.3675

Low‐frequency dielectric properties of Co‐Al2O3composite films

G. A. Niklasson and K. Brantervik
Applied Physics Letters 50 (14) 937 (1987)
https://doi.org/10.1063/1.97986

AC response near percolation threshold: transfer matrix calculation in 2D

A L R Bug, G S Grest, M H Cohen and I Webman
Journal of Physics A: Mathematical and General 19 (6) L323 (1986)
https://doi.org/10.1088/0305-4470/19/6/005

Infrared-optical properties of gas-evaporated gold blacks: Evidence for anomalous conduction on fractal structures

G. A. Niklasson and C. G. Granqvist
Physical Review Letters 56 (3) 256 (1986)
https://doi.org/10.1103/PhysRevLett.56.256

AC properties of 2D percolation networks: a transfer matrix approach

J M Laugier, J P Clerc, G Giraud and J M Luck
Journal of Physics A: Mathematical and General 19 (15) 3153 (1986)
https://doi.org/10.1088/0305-4470/19/15/036

A real-space renormalisation group approach to electrical and noise properties of percolation clusters

J M Luck
Journal of Physics A: Mathematical and General 18 (11) 2061 (1985)
https://doi.org/10.1088/0305-4470/18/11/027

Electrical properties of percolation clusters: exact results on a deterministic fractal

J P Clerc, G Giraud, J M Laugier and J M Luck
Journal of Physics A: Mathematical and General 18 (13) 2565 (1985)
https://doi.org/10.1088/0305-4470/18/13/032