La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
R. Rammal
J. Physique Lett., 46 4 (1985) 129-136
Citations de cet article :
47 articles
Transport Processes in Macroscopically Disordered Media
Andrei A. Snarskii, Igor V. Bezsudnov, Vladimir A. Sevryukov, Alexander Morozovskiy and Joseph Malinsky Transport Processes in Macroscopically Disordered Media 161 (2016) https://doi.org/10.1007/978-1-4419-8291-9_13
Giant 1/f noise in two-dimensional polycrystalline media
A. Snarskii and I. Bezsudnov Physica B: Condensed Matter 403 (19-20) 3519 (2008) https://doi.org/10.1016/j.physb.2008.05.018
Liquid-Film-Assisted Formation of Alumina/Niobium Interfaces
Joshua D. Sugar, Joseph T. McKeown, Robert A. Marks and Andreas M. Glaeser Journal of the American Ceramic Society 85 (10) 2523 (2002) https://doi.org/10.1111/j.1151-2916.2002.tb00490.x
Field distributions and effective-medium approximation for weakly nonlinear media
Yves-Patrick Pellegrini Physical Review B 61 (14) 9365 (2000) https://doi.org/10.1103/PhysRevB.61.9365
Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: Dipolar spectral theory
Mark I. Stockman, Konstantin B. Kurlayev and Thomas F. George Physical Review B 60 (24) 17071 (1999) https://doi.org/10.1103/PhysRevB.60.17071
Non-linear and non-local transport processes in heterogeneous media: from long-range correlated percolation to fracture and materials breakdown
Muhammad Sahimi Physics Reports 306 (4-6) 213 (1998) https://doi.org/10.1016/S0370-1573(98)00024-6
Mathematics of Multiscale Materials
Ohad Levy The IMA Volumes in Mathematics and its Applications, Mathematics of Multiscale Materials 99 155 (1998) https://doi.org/10.1007/978-1-4612-1728-2_10
noise in polymer thick-film resistors
Andrzej Dziedzic and Andrzej Kolek Journal of Physics D: Applied Physics 31 (17) 2091 (1998) https://doi.org/10.1088/0022-3727/31/17/003
1/fnoise in percolation and percolationlike systems
A. A. Snarskii, A. E. Morozovsky, A. Kolek and A. Kusy Physical Review E 53 (6) 5596 (1996) https://doi.org/10.1103/PhysRevE.53.5596
Critical behaviour of non-linear susceptibility in random non-linear resistor networks
G M Zhang Journal of Physics: Condensed Matter 8 (37) 6933 (1996) https://doi.org/10.1088/0953-8984/8/37/015
Weakly nonlinear conductivity of random composites: A series expansion approach
Ohad Levy and David J. Bergman Journal of Statistical Physics 82 (5-6) 1327 (1996) https://doi.org/10.1007/BF02183385
Noise Analysis Applied to Electrochemical Systems
U. Bertocci and F. Huet Corrosion 51 (2) 131 (1995) https://doi.org/10.5006/1.3293585
Critical behavior of the weakly nonlinear conductivity and flicker noise of two-component composites
Ohad Levy and David J. Bergman Physical Review B 50 (6) 3652 (1994) https://doi.org/10.1103/PhysRevB.50.3652
Calculation of the flicker noise in metal-insulator composites using a mean-field theory
L.F. Fonseca and I. Balberg Nanostructured Materials 3 (1-6) 169 (1993) https://doi.org/10.1016/0965-9773(93)90075-M
Resistivity and electrical noise in granular metal composites
L. F. Fonseca and I. Balberg Physical Review B 48 (20) 14915 (1993) https://doi.org/10.1103/PhysRevB.48.14915
Solid State Physics
David J. Bergman and David Stroud Solid State Physics 46 147 (1992) https://doi.org/10.1016/S0081-1947(08)60398-7
Methods for determining the distribution of Josephson coupling energies in high-Tc superconductors
G. Forgacs, L.S. Schulman, L.B. Kiss, P. Svedlindh and L. Lundgren Physica C: Superconductivity 177 (1-3) 67 (1991) https://doi.org/10.1016/0921-4534(91)90298-D
Thin metal films and percolation theory
Pavel Šmilauer Contemporary Physics 32 (2) 89 (1991) https://doi.org/10.1080/00107519108213805
Multifractality of conductance jumps in percolation
Stéphane Roux, Alex Hansen and Einar L. Hinrichsen Physical Review B 43 (4) 3601 (1991) https://doi.org/10.1103/PhysRevB.43.3601
Dynamic mechanisms of disorderly growth: Recent approaches to understanding diffusion limited aggregation
H.E. Stanley, A. Bunde, S. Havlin, J. Lee, E. Roman and S. Schwarzer Physica A: Statistical Mechanics and its Applications 168 (1) 23 (1990) https://doi.org/10.1016/0378-4371(90)90356-W
Electrical-conduction mechanisms in polymer–copper-particle composites. II. (1/f)-noise measurements in the percolation limit
C. Pierre, R. Deltour, J. Van Bentum, J. A. A. J. Perenboom and R. Rammal Physical Review B 42 (6) 3386 (1990) https://doi.org/10.1103/PhysRevB.42.3386
The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models
J.P. Clerc, G. Giraud, J.M. Laugier and J.M. Luck Advances in Physics 39 (3) 191 (1990) https://doi.org/10.1080/00018739000101501
Nonlinear behavior and 1/fnoise near a conductivity threshold: Effects of local microgeometry
David J. Bergman Physical Review B 39 (7) 4598 (1989) https://doi.org/10.1103/PhysRevB.39.4598
Electrical transport properties near a classical conductivity or percolation threshold
David J. Bergman Physica A: Statistical Mechanics and its Applications 157 (1) 72 (1989) https://doi.org/10.1016/0378-4371(89)90281-1
Some problems on current noise in resistor network
G. Giraud, J.P. Clerc, J.M. Laugier, et al. Physica A: Statistical Mechanics and its Applications 157 (1) 140 (1989) https://doi.org/10.1016/0378-4371(89)90289-6
Effective-medium theory for weakly nonlinear composites
X. C. Zeng, D. J. Bergman, P. M. Hui and D. Stroud Physical Review B 38 (15) 10970 (1988) https://doi.org/10.1103/PhysRevB.38.10970
Nonlinear susceptibilities of granular matter
D. Stroud and P. M. Hui Physical Review B 37 (15) 8719 (1988) https://doi.org/10.1103/PhysRevB.37.8719
Probability densities of homogeneous functions: explicit approximation and applications to percolating networks
R Blumenfeld Journal of Physics A: Mathematical and General 21 (3) 815 (1988) https://doi.org/10.1088/0305-4470/21/3/037
Critical exponents for conductance and 1/f noise in discrete-lattice percolation
A Kolek and A Kusy Journal of Physics C: Solid State Physics 21 (16) L573 (1988) https://doi.org/10.1088/0022-3719/21/16/005
Multifractal phenomena in physics and chemistry
H. Eugene Stanley and Paul Meakin Nature 335 (6189) 405 (1988) https://doi.org/10.1038/335405a0
Temperature dependence of resistance noise in metal-insulator mixtures below the percolation threshold
Dror Lubin, Isaac Goldhirsch and Yuval Gefen Physical Review B 38 (9) 5899 (1988) https://doi.org/10.1103/PhysRevB.38.5899
Time-Dependent Effects in Disordered Materials
R. Rammal Time-Dependent Effects in Disordered Materials 263 (1987) https://doi.org/10.1007/978-1-4684-7476-3_29
Time-Dependent Effects in Disordered Materials
H. Eugene Stanley Time-Dependent Effects in Disordered Materials 145 (1987) https://doi.org/10.1007/978-1-4684-7476-3_12
Resistance fluctuations in random resistor networks above and below the percolation threshold
David C. Wright, David J. Bergman and Yacov Kantor Physical Review B 33 (1) 396 (1986) https://doi.org/10.1103/PhysRevB.33.396
Noise spectra of three-dimensional random metal-insulator composites
D. A. Rudman, J. J. Calabrese and J. C. Garland Physical Review B 33 (2) 1456 (1986) https://doi.org/10.1103/PhysRevB.33.1456
Noise exponent in superconducting-normal metal mixtures
P. M. Hui and D. Stroud Physical Review B 34 (11) 8101 (1986) https://doi.org/10.1103/PhysRevB.34.8101
Exponents for 1/fnoise, near a continuum percolation threshold
A.-M. S. Tremblay, Shechao Feng and P. Breton Physical Review B 33 (3) 2077 (1986) https://doi.org/10.1103/PhysRevB.33.2077
Two-component model for the resistivity and noise of tunneling metal-insulator composites
Joseph V. Mantese, W. A. Curtin and Watt W. Webb Physical Review B 33 (12) 7897 (1986) https://doi.org/10.1103/PhysRevB.33.7897
Critical Dynamics in Spin Glasses: Experimental Study and Fractal Model Interpretation
P Beauvillain, J. P Renard, M Matecki and J. J Prejean Europhysics Letters (EPL) 2 (1) 23 (1986) https://doi.org/10.1209/0295-5075/2/1/004
Multiscaling approach in random resistor and random superconducting networks
L. de Arcangelis, S. Redner and A. Coniglio Physical Review B 34 (7) 4656 (1986) https://doi.org/10.1103/PhysRevB.34.4656
Diffusion noise of fractal networks and percolation clusters
B. Fourcade and A.-M. S. Tremblay Physical Review B 34 (11) 7802 (1986) https://doi.org/10.1103/PhysRevB.34.7802
Fractals in Physics
Rammal RAMMAL Fractals in Physics 373 (1986) https://doi.org/10.1016/B978-0-444-86995-1.50070-6
Physics of Finely Divided Matter
R. Rammal Springer Proceedings in Physics, Physics of Finely Divided Matter 5 118 (1985) https://doi.org/10.1007/978-3-642-93301-1_15
1fNoise of Granular Metal-Insulator Composites
Joseph V. Mantese and Watt W. Webb Physical Review Letters 55 (20) 2212 (1985) https://doi.org/10.1103/PhysRevLett.55.2212
Flicker (1f) Noise in Percolation Networks: A New Hierarchy of Exponents
R. Rammal, C. Tannous, P. Breton and A. -M. S. Tremblay Physical Review Letters 54 (15) 1718 (1985) https://doi.org/10.1103/PhysRevLett.54.1718
Comment on "Electrical-Conductivity Fluctuations near the Percolation Threshold"
R. Rammal Physical Review Letters 55 (13) 1428 (1985) https://doi.org/10.1103/PhysRevLett.55.1428
Noise scaling in continuum percolating films
G. A. Garfunkel and M. B. Weissman Physical Review Letters 55 (3) 296 (1985) https://doi.org/10.1103/PhysRevLett.55.296