La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
J.C. Angles d'Auriac , M. Preissmann , R. Rammal
J. Physique Lett., 46 5 (1985) 173-180
Citations de cet article :
47 articles
Ordering transition of the three-dimensional four-state random-field Potts model
Manoj Kumar and Martin Weigel Physical Review B 111 (21) (2025) https://doi.org/10.1103/fl4b-qgf1
Quasi-exact ground-state extrapolation for the random-field Potts model
Manoj Kumar and Martin Weigel Computer Physics Communications 286 108685 (2023) https://doi.org/10.1016/j.cpc.2023.108685
Computational characteristics of the random-field Ising model with long-range interaction
Fangxuan Liu and L.-M. Duan Physical Review A 108 (1) (2023) https://doi.org/10.1103/PhysRevA.108.012415
Finite-size scaling of the random-field Ising model above the upper critical dimension
Nikolaos G. Fytas, Víctor Martín-Mayor, Giorgio Parisi, Marco Picco and Nicolas Sourlas Physical Review E 108 (4) (2023) https://doi.org/10.1103/PhysRevE.108.044146
On the comparison of optimization algorithms for the random-field Potts model
Manoj Kumar and Martin Weigel Journal of Physics: Conference Series 2241 (1) 012003 (2022) https://doi.org/10.1088/1742-6596/2241/1/012003
Xu-Wen Wang, Dandi Qiao, Michael Cho, Dawn L. DeMeo, Edwin K. Silverman and Yang-Yu Liu (2022) https://doi.org/10.1101/2022.01.26.477756
Critical behavior of the three-state random-field Potts model in three dimensions
Manoj Kumar, Varsha Banerjee, Sanjay Puri and Martin Weigel Physical Review Research 4 (4) (2022) https://doi.org/10.1103/PhysRevResearch.4.L042041
Random-bond antiferromagnetic Ising model in a field
Jean-Christian Anglès d'Auriac and Ferenc Iglói Physical Review E 106 (3) (2022) https://doi.org/10.1103/PhysRevE.106.034117
The potential of quantum annealing for rapid solution structure identification
Yuchen Pang, Carleton Coffrin, Andrey Y. Lokhov and Marc Vuffray Constraints 26 (1-4) 1 (2021) https://doi.org/10.1007/s10601-020-09315-0
Evidence for Supersymmetry in the Random-Field Ising Model at
D=5
Nikolaos G. Fytas, Víctor Martín-Mayor, Giorgio Parisi, Marco Picco and Nicolas Sourlas Physical Review Letters 122 (24) (2019) https://doi.org/10.1103/PhysRevLett.122.240603
On the critical exponent α of the 5D random-field Ising model
N G Fytas, Víctor Martín-Mayor, Giorgio Parisi, Marco Picco and Nicolas Sourlas Journal of Statistical Mechanics: Theory and Experiment 2019 (9) 093203 (2019) https://doi.org/10.1088/1742-5468/ab3987
Approximate ground states of the random-field Potts model from graph cuts
Manoj Kumar, Ravinder Kumar, Martin Weigel, et al. Physical Review E 97 (5) (2018) https://doi.org/10.1103/PhysRevE.97.053307
Deploying a quantum annealing processor to detect tree cover in aerial imagery of California
Edward Boyda, Saikat Basu, Sangram Ganguly, et al. PLOS ONE 12 (2) e0172505 (2017) https://doi.org/10.1371/journal.pone.0172505
Specific-heat exponent and modified hyperscaling in the 4D random-field Ising model
N G Fytas, V Martín-Mayor, M Picco and N Sourlas Journal of Statistical Mechanics: Theory and Experiment 2017 (3) 033302 (2017) https://doi.org/10.1088/1742-5468/aa5dc3
Phase Transitions in Disordered Systems: The Example of the Random-Field Ising Model in Four Dimensions
Nikolaos G. Fytas, Víctor Martín-Mayor, Marco Picco and Nicolas Sourlas Physical Review Letters 116 (22) (2016) https://doi.org/10.1103/PhysRevLett.116.227201
Revisiting the scaling of the specific heat of the three-dimensional random-field Ising model
Nikolaos G. Fytas, Panagiotis E. Theodorakis and Alexander K. Hartmann The European Physical Journal B 89 (9) (2016) https://doi.org/10.1140/epjb/e2016-70364-3
Efficient numerical methods for the random-field Ising model: Finite-size scaling, reweighting extrapolation, and computation of response functions
Nikolaos G. Fytas and Víctor Martín-Mayor Physical Review E 93 (6) (2016) https://doi.org/10.1103/PhysRevE.93.063308
Ground-state morphologies in the random-field Ising model: Scaling properties and non-Porod behavior
Gaurav P. Shrivastav, Manoj Kumar, Varsha Banerjee and Sanjay Puri Physical Review E 90 (3) (2014) https://doi.org/10.1103/PhysRevE.90.032140
Dimensional reduction and its breakdown in the three-dimensional long-range random-field Ising model
Maxime Baczyk, Matthieu Tissier, Gilles Tarjus and Yoshinori Sakamoto Physical Review B 88 (1) (2013) https://doi.org/10.1103/PhysRevB.88.014204
Fluctuations and criticality in the random-field Ising model
Panagiotis E. Theodorakis, Ioannis Georgiou and Nikolaos G. Fytas Physical Review E 87 (3) (2013) https://doi.org/10.1103/PhysRevE.87.032119
Universality aspects of the trimodal random-field Ising model
N.G. Fytas, P.E. Theodorakis and I. Georgiou The European Physical Journal B 85 (10) (2012) https://doi.org/10.1140/epjb/e2012-30731-8
Scattering properties of paramagnetic ground states in the three-dimensional random-field Ising model
Gaurav P. Shrivastav, Siddharth Krishnamoorthy, Varsha Banerjee and Sanjay Puri EPL (Europhysics Letters) 96 (3) 36003 (2011) https://doi.org/10.1209/0295-5075/96/36003
Domain walls and Schramm-Loewner evolution in the random-field Ising model
J. D. Stevenson and M. Weigel EPL (Europhysics Letters) 95 (4) 40001 (2011) https://doi.org/10.1209/0295-5075/95/40001
Percolation and Schramm–Loewner evolution in the 2D random-field Ising model
Jacob D. Stevenson and Martin Weigel Computer Physics Communications 182 (9) 1879 (2011) https://doi.org/10.1016/j.cpc.2010.11.028
Statistical and Nonlinear Physics
Heiko Rieger Encyclopedia of Complexity and Systems Science Series, Statistical and Nonlinear Physics 611 (2009) https://doi.org/10.1007/978-1-0716-1454-9_378
Encyclopedia of Complexity and Systems Science
Heiko Rieger Encyclopedia of Complexity and Systems Science 6407 (2009) https://doi.org/10.1007/978-0-387-30440-3_378
Geometrical clusters in two-dimensional random-field Ising models
László Környei and Ferenc Iglói Physical Review E 75 (1) (2007) https://doi.org/10.1103/PhysRevE.75.011131
Soft Annealing: A New Approach to Difficult Computational Problems
Nicolas Sourlas Physical Review Letters 94 (7) (2005) https://doi.org/10.1103/PhysRevLett.94.070601
Ground-state numerical study of the three-dimensional random-field Ising model
I. Dukovski and J. Machta Physical Review B 67 (1) (2003) https://doi.org/10.1103/PhysRevB.67.014413
Scale Invariance in Disordered Systems: The Example of the Random-Field Ising Model
Giorgio Parisi and Nicolas Sourlas Physical Review Letters 89 (25) (2002) https://doi.org/10.1103/PhysRevLett.89.257204
Phase Transitions and Critical Phenomena
M.J. Alava, P.M. Duxbury, C.F. Moukarzel and H. Rieger Phase Transitions and Critical Phenomena 18 143 (2001) https://doi.org/10.1016/S1062-7901(01)80009-4
Critical Slowing Down in Polynomial Time Algorithms
A. Alan Middleton Physical Review Letters 88 (1) (2001) https://doi.org/10.1103/PhysRevLett.88.017202
Informatics
A. Peter Young Lecture Notes in Computer Science, Informatics 2000 356 (2001) https://doi.org/10.1007/3-540-44577-3_25
Computational complexity of determining the barriers to interface motion in random systems
A. Alan Middleton Physical Review E 59 (3) 2571 (1999) https://doi.org/10.1103/PhysRevE.59.2571
Disorder, order, and domain wall roughening in the two-dimensional random field Ising model
E. T. Seppälä, V. Petäjä and M. J. Alava Physical Review E 58 (5) R5217 (1998) https://doi.org/10.1103/PhysRevE.58.R5217
Ground state structure of random magnets
S. Bastea and P. M. Duxbury Physical Review E 58 (4) 4261 (1998) https://doi.org/10.1103/PhysRevE.58.4261
The 3d random field Ising model at zero temperature
J.-C. Anglès d'Auriac and N Sourlas Europhysics Letters (EPL) 39 (5) 473 (1997) https://doi.org/10.1209/epl/i1997-00379-x
Optimal cuts in graphs and statistical mechanics
J.C.Anglès d'Auriac, M. Preissmann and A. Sebö Mathematical and Computer Modelling 26 (8-10) 1 (1997) https://doi.org/10.1016/S0895-7177(97)00195-7
Porous Silicon Science and Technology
N. Koshida Porous Silicon Science and Technology 323 (1995) https://doi.org/10.1007/978-3-662-03120-9_19
Optimal paths and universality
M Cieplak, A Maritan, M R Swift, et al. Journal of Physics A: Mathematical and General 28 (20) 5693 (1995) https://doi.org/10.1088/0305-4470/28/20/003
Extensive Numerical Simulations of Weighted Matchings: Total Length and Distribution of Links in the Optimal Solution
R Brunetti, W Krauth, M Mézard and G Parisi Europhysics Letters (EPL) 14 (4) 295 (1991) https://doi.org/10.1209/0295-5075/14/4/002
Heidelberg Colloquium on Glassy Dynamics
M. Mézard Lecture Notes in Physics, Heidelberg Colloquium on Glassy Dynamics 275 354 (1987) https://doi.org/10.1007/BFb0057527
Integer Optimization and Zero-Temperature Fixed Point in Ising Random-Field Systems
Andrew T. Ogielski Physical Review Letters 57 (10) 1251 (1986) https://doi.org/10.1103/PhysRevLett.57.1251
Comment on "Spin-Glass on a Bethe Lattice"
Yonathan Shapir Physical Review Letters 57 (2) 271 (1986) https://doi.org/10.1103/PhysRevLett.57.271
Residual Energies after Slow Cooling of Disordered Systems
David A. Huse and Daniel S. Fisher Physical Review Letters 57 (17) 2203 (1986) https://doi.org/10.1103/PhysRevLett.57.2203
Multigrid Methods II
Achi Brandt, Dorit Ron and Daniel J. Amit Lecture Notes in Mathematics, Multigrid Methods II 1228 65 (1986) https://doi.org/10.1007/BFb0072642
Hyperscaling, dimensional reduction, and the random-field Ising model
Ho-Fai Cheung Physical Review B 33 (9) 6191 (1986) https://doi.org/10.1103/PhysRevB.33.6191