La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
G. Loupias , J. Chomilier , D. Guérard
J. Physique Lett., 45 7 (1984) 301-306
Citations de cet article :
25 articles
Evidence of a weak electronic density distortion in polymerized A1C60 (A=K and Rb) compared to pristine C60
M Marangolo, Ch Bellin, G Loupias, et al. Physica B: Condensed Matter 318 (4) 365 (2002) https://doi.org/10.1016/S0921-4526(02)00806-2
Anisotropy of the electron momentum density of graphite studied by(γ,eγ)and(e,2e)spectroscopy
T. Sattler, Th. Tschentscher, J. R. Schneider, et al. Physical Review B 63 (15) (2001) https://doi.org/10.1103/PhysRevB.63.155204
Three-dimensional electron momentum densities of solids
F Bell and J R Schneider Journal of Physics: Condensed Matter 13 (34) 7905 (2001) https://doi.org/10.1088/0953-8984/13/34/327
Momentum density of electrons in CsRb2C60, versus temperature
Massimiliano Marangolo, Genevieve Loupias, Sohrab Rabii, et al. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 339 (1) 217 (2000) https://doi.org/10.1080/10587250008031044
Experimental and theoretical study of electron momentum density ofAnC60(n=3,4)and comparison to pristineC60
M. Marangolo, Ch. Bellin, G. Loupias, et al. Physical Review B 60 (24) 17084 (1999) https://doi.org/10.1103/PhysRevB.60.17084
Experimental and theoretical study of electron momentum density ofK6C60and comparison to pristineC60
M. Marangolo, J. Moscovici, G. Loupias, et al. Physical Review B 58 (12) 7593 (1998) https://doi.org/10.1103/PhysRevB.58.7593
The electronic structure of different forms of solid carbon studied by electron momentum spectroscopy
M. Vos, A. Kheifets, E. Weigold, S.A. Canney and F.F. Kurp Journal of Electron Spectroscopy and Related Phenomena 87 (3) 231 (1998) https://doi.org/10.1016/S0368-2048(97)00101-1
Compton Profiles and Electronic Density in C
60
J Moscovici, G Loupias, S Rabii, et al. Europhysics Letters (EPL) 31 (2) 87 (1995) https://doi.org/10.1209/0295-5075/31/2/005
Investigation of electronic distribution in hexagonal BN by Compton scattering
G. Loupias, R. Wentzcovitch, L. Bellaïche, J. Moscovici and S. Rabii Physical Review B 49 (19) 13342 (1994) https://doi.org/10.1103/PhysRevB.49.13342
Theoretical study of charge transfer in graphite intercalation compounds
S. Doyen-Lang, A. Charlier, L. Lang, M.F. Charlier and E. McRae Synthetic Metals 58 (1) 95 (1993) https://doi.org/10.1016/0379-6779(93)91121-H
Two-dimensional electron momentum distribution of graphite
Lou Yongming, B Johansson and R M Nieminen Journal of Physics: Condensed Matter 3 (12) 1699 (1991) https://doi.org/10.1088/0953-8984/3/12/002
Angular correlation distribution of electron-positron annihilation in graphite
Lou Yongming, B Johansson and R M Nieminen Journal of Physics: Condensed Matter 3 (13) 2057 (1991) https://doi.org/10.1088/0953-8984/3/13/008
Charge transfer and the nature of empty states in potassium-intercalated graphite
G. Loupias, S. Rabii, J. Tarbès, S. Nozières and R. C. Tatar Physical Review B 41 (9) 5519 (1990) https://doi.org/10.1103/PhysRevB.41.5519
Polarization of carbon electron-momentum density in lithium-graphite intercalation compounds
S. Rabii, J. Chomilier and G. Loupias Physical Review B 40 (15) 10105 (1989) https://doi.org/10.1103/PhysRevB.40.10105
Momentum Distributions
Malcolm J. Cooper Momentum Distributions 307 (1989) https://doi.org/10.1007/978-1-4899-2554-1_22
Chemical Crystallography with Pulsed Neutrons and Synchroton X-rays
Pierre J. Becker Chemical Crystallography with Pulsed Neutrons and Synchroton X-rays 217 (1988) https://doi.org/10.1007/978-94-009-4027-7_11
Compton scattering beyond the impulse approximation: Application to the core electrons of carbon
A. Issolah, B. Levy, A. Beswick and G. Loupias Physical Review A 38 (9) 4509 (1988) https://doi.org/10.1103/PhysRevA.38.4509
Lithium intercalated graphite: Experimental and theoretical investigations of electronic density versus stage, by Compton scattering
S Rabii, G Loupias, J Chomilier and D Guerard Synthetic Metals 23 (1-4) 175 (1988) https://doi.org/10.1016/0379-6779(88)90479-1
Theoretical Compton profiles of graphite andLiC6
M. Y. Chou, Marvin L. Cohen and Steven G. Louie Physical Review B 33 (10) 6619 (1986) https://doi.org/10.1103/PhysRevB.33.6619
Electronic density of first stage lithium intercalated graphite
G. Loupias, J. Chomilier and D. Guérard Solid State Communications 55 (4) 299 (1985) https://doi.org/10.1016/0038-1098(85)90612-X
Correction for multiple scattering in Compton profile experiments: Application for synchrotron source photons
Jacques Chomilier, Geneviève Loupias and Joshua Felsteiner Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 235 (3) 603 (1985) https://doi.org/10.1016/0168-9002(85)90114-7
Compton-profile anisotropies in graphite and hexagonal boron nitride
R. Tyk, J. Felsteiner, I. Gertner and R. Moreh Physical Review B 32 (4) 2625 (1985) https://doi.org/10.1103/PhysRevB.32.2625
Cohesion and structure in stage-1 graphite intercalation compounds
D. P. DiVincenzo and E. J. Mele Physical Review B 32 (4) 2538 (1985) https://doi.org/10.1103/PhysRevB.32.2538
Iron oxide electrodes in lithium organic electrolyte rechargeable batteries
S. Morzilli and B. Scrosati Electrochimica Acta 30 (10) 1271 (1985) https://doi.org/10.1016/0013-4686(85)85002-7
Three-dimensional band structure of graphite studied by angle-resolved photoemission using ultraviolet synchrotron radiation
D. Marchand, C. Frétigny, M. Laguës, et al. Physical Review B 30 (8) 4788 (1984) https://doi.org/10.1103/PhysRevB.30.4788