La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
P.G. de Gennes
J. Physique Lett., 35 9 (1974) 133-134
Citations de cet article :
42 articles
Andrea Ridolfi, Hannes Witt, Janni Harju, Tinka V. M. Clement, Erwin E. J. G. Peterman, Chase P. Broedersz and Gijs J. L. Wuite (2024) https://doi.org/10.1101/2024.08.20.608279
Ion-mediated condensation controls the mechanics of mitotic chromosomes
Hannes Witt, Janni Harju, Emma M. J. Chameau, Charlotte M. A. Bruinsma, Tinka V. M. Clement, Christian F. Nielsen, Ian D. Hickson, Erwin J. G. Peterman, Chase P. Broedersz and Gijs J. L. Wuite Nature Materials 23 (11) 1556 (2024) https://doi.org/10.1038/s41563-024-01975-0
Effect of Stiffness on the Dynamics of Entangled Nanofiber Networks at Low Concentrations
Ahmad Reza Motezakker, Andrés Córdoba, Tomas Rosén, Fredrik Lundell and L. Daniel Söderberg Macromolecules 56 (23) 9595 (2023) https://doi.org/10.1021/acs.macromol.3c01526
The Z1+ package: Shortest multiple disconnected path for the analysis of entanglements in macromolecular systems
Martin Kröger, Joseph D. Dietz, Robert S. Hoy and Clarisse Luap Computer Physics Communications 283 108567 (2023) https://doi.org/10.1016/j.cpc.2022.108567
Validation and Refinement of Unified Analytic Model for Flexible and Semiflexible Polymer Melt Entanglement
Joseph D. Dietz, Martin Kröger and Robert S. Hoy Macromolecules 55 (9) 3613 (2022) https://doi.org/10.1021/acs.macromol.1c02597
Rheological Properties of Cartilage Glycosaminoglycans and Proteoglycans
Ferenc Horkay, Jack F. Douglas and Srinivasa R. Raghavan Macromolecules 54 (5) 2316 (2021) https://doi.org/10.1021/acs.macromol.0c02709
Unified Analytic Expressions for the Entanglement Length, Tube Diameter, and Plateau Modulus of Polymer Melts
Robert S. Hoy and Martin Kröger Physical Review Letters 124 (14) (2020) https://doi.org/10.1103/PhysRevLett.124.147801
Two-stage athermal solidification of semiflexible polymers and fibers
Joseph D. Dietz and Robert S. Hoy Soft Matter 16 (26) 6206 (2020) https://doi.org/10.1039/D0SM00754D
MOLECULAR TREATMENT OF RUBBER-LIKE ELASTICITY FOR ACTIVE FILLER–LOADED NETWORKS
Yoshio Hoei Rubber Chemistry and Technology 88 (4) 640 (2015) https://doi.org/10.5254/rct.15.84884
Anionic Polymerization
David J. Lohse Anionic Polymerization 1033 (2015) https://doi.org/10.1007/978-4-431-54186-8_24
Monte Carlo Simulation of Short Chain Branched Polyolefins: Structure and Properties
Krzysztof Moorthi, Kazunori Kamio, Javier Ramos and Doros N. Theodorou Macromolecules 45 (20) 8453 (2012) https://doi.org/10.1021/ma301322v
Stress Relaxation in Entangled Melts of Unlinked Ring Polymers
Scott T. Milner and Jillian D. Newhall Physical Review Letters 105 (20) (2010) https://doi.org/10.1103/PhysRevLett.105.208302
Development of minimal models of the elastic properties of flexible and stiff polymer networks with permanent and thermoreversible cross-links
David C. Lin, Jack F. Douglas and Ferenc Horkay Soft Matter 6 (15) 3548 (2010) https://doi.org/10.1039/b925219n
The Localization Model of Rubber Elasticity
Jack F. Douglas Macromolecular Symposia 291-292 (1) 230 (2010) https://doi.org/10.1002/masy.201050527
Viscoelasticity and primitive path analysis of entangled polymer liquids: From F-actin to polyethylene
Nariya Uchida, Gary S. Grest and Ralf Everaers The Journal of Chemical Physics 128 (4) (2008) https://doi.org/10.1063/1.2825597
On Chain Statistics and Entanglement of Flexible Linear Polymer Melts
Shi-Qing Wang Macromolecules 40 (24) 8684 (2007) https://doi.org/10.1021/ma0712549
The Influence of Chemical Structure on Polyolefin Melt Rheology and Miscibility
David J. Lohse Journal of Macromolecular Science, Part C: Polymer Reviews 45 (4) 289 (2005) https://doi.org/10.1080/15321790500304098
Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems
Martin Kröger Computer Physics Communications 168 (3) 209 (2005) https://doi.org/10.1016/j.cpc.2005.01.020
Scale Invariance of the Stress Production Mechanism in Polymeric Systems
R. C. Picu and M. C. Pavel Macromolecules 36 (24) 9205 (2003) https://doi.org/10.1021/ma0259867
A Length Scale Dependent Model for Stress Relaxation in Polymer Melts
Michael F. Herman Macromolecules 34 (13) 4580 (2001) https://doi.org/10.1021/ma001268d
A Novel Look at Models for Polymer Entanglement
N. Heymans Macromolecules 33 (11) 4226 (2000) https://doi.org/10.1021/ma9911849
Quasielastic light scattering of polystyrene in diethyl malonate in semidilute concentration
C. H. Wang, Z. Sun and Q. R. Huang The Journal of Chemical Physics 105 (14) 6052 (1996) https://doi.org/10.1063/1.472441
Small-Angle Neutron Scattering Investigation of Topological Constraints and Tube Deformation in Networks
E. Straube, V. Urban, W. Pyckhout-Hintzen, D. Richter and C. J. Glinka Physical Review Letters 74 (22) 4464 (1995) https://doi.org/10.1103/PhysRevLett.74.4464
NMR Approach to the Dynamic Screening Effect in Highly Entangled Polymers: Polyethylene Oxide
J. P. Cohen Addad, A. Guillermo and C. Lartigue Physical Review Letters 74 (19) 3820 (1995) https://doi.org/10.1103/PhysRevLett.74.3820
The dynamics of polymer melts as seen by neutron spin echo spectroscopy
Bernd Ewen and Dieter Richter Macromolecular Symposia 90 (1) 131 (1995) https://doi.org/10.1002/masy.19950900110
Science and Technology of Rubber
G. VER STRATE and D.J. LOHSE Science and Technology of Rubber 95 (1994) https://doi.org/10.1016/B978-0-08-051667-7.50008-1
Effects of chain topology on polymer dynamics: Bulk melts
J. Scott Shaffer The Journal of Chemical Physics 101 (5) 4205 (1994) https://doi.org/10.1063/1.467470
Large scale motion in polymer melts, a neutron spin–echo study
D Richter, A Zirkel, B Farago, L J Fetters and J S Huang Physica Scripta T49A 242 (1993) https://doi.org/10.1088/0031-8949/1993/T49A/041
Molecular geometry and chain entanglement: parameters for the tube model
Tianbai He and Roger S. Porter Macromolecular Theory and Simulations 1 (3) 119 (1992) https://doi.org/10.1002/mats.1992.040010302
Dynamical considerations of network properties
S. F. Edwards British Polymer Journal 17 (2) 122 (1985) https://doi.org/10.1002/pi.4980170206
Concentration dependence of the primitive path step length
K.E. Evans and A.M. Donald Polymer 26 (1) 101 (1985) https://doi.org/10.1016/0032-3861(85)90063-1
On the strength and deformation dependence of the tube‐like topological constraints of polymer networks, melts and concentrated solutions. II. Polymer melts and concentrated solutions
G. Heinrich and E. Straube Acta Polymerica 35 (2) 115 (1984) https://doi.org/10.1002/actp.1984.010350201
Viscosity and longest relaxation time of semi-dilute polymer solutions: II. Theta solvent
M. Adam and M. Delsanti Journal de Physique 45 (9) 1513 (1984) https://doi.org/10.1051/jphys:019840045090151300
Experimental tests of entanglement models of rubber elasticity: 1. Uniaxial extension-compression
Moshe Gottlieb and Richard J. Gaylord Polymer 24 (12) 1644 (1983) https://doi.org/10.1016/0032-3861(83)90186-6
Viscosity of semi-dilute polymer solutions
M. Adam and M. Delsanti Journal de Physique 43 (3) 549 (1982) https://doi.org/10.1051/jphys:01982004303054900
Richteret al.Respond
D. Richter, A. Baumgärtner, K. Binder, B. Ewen and J. B. Hayter Physical Review Letters 48 (24) 1695 (1982) https://doi.org/10.1103/PhysRevLett.48.1695
Investigations of model polymers: Dynamics of melts and statics of a long chain in a dilute melt of shorter chains
Marvin Bishop, David Ceperley, H. L. Frisch and M. H. Kalos The Journal of Chemical Physics 76 (3) 1557 (1982) https://doi.org/10.1063/1.443116
Entanglement and excluded volume effects in rubber elasticity
Richard J. Gaylord Polymer Engineering & Science 19 (4) 263 (1979) https://doi.org/10.1002/pen.760190407
The theory of rubber elasticity
S. F. Edwards British Polymer Journal 9 (2) 140 (1977) https://doi.org/10.1002/pi.4980090209
Dynamics of swollen networks
S F Edwards and A G Miller Journal of Physics C: Solid State Physics 9 (11) 2011 (1976) https://doi.org/10.1088/0022-3719/9/11/011
Integral formulation of the Ginzburg-Landau theory of the laser
H. Dekker Optics Communications 16 (1) 12 (1976) https://doi.org/10.1016/0030-4018(76)90039-0
An estimation of the tube radius in the entanglement effect of concentrated polymer solutions
M Doi Journal of Physics A: Mathematical and General 8 (6) 959 (1975) https://doi.org/10.1088/0305-4470/8/6/014