Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Ion-mediated condensation controls the mechanics of mitotic chromosomes

Hannes Witt, Janni Harju, Emma M. J. Chameau, Charlotte M. A. Bruinsma, Tinka V. M. Clement, Christian F. Nielsen, Ian D. Hickson, Erwin J. G. Peterman, Chase P. Broedersz and Gijs J. L. Wuite
Nature Materials 23 (11) 1556 (2024)
https://doi.org/10.1038/s41563-024-01975-0

Effect of Stiffness on the Dynamics of Entangled Nanofiber Networks at Low Concentrations

Ahmad Reza Motezakker, Andrés Córdoba, Tomas Rosén, Fredrik Lundell and L. Daniel Söderberg
Macromolecules 56 (23) 9595 (2023)
https://doi.org/10.1021/acs.macromol.3c01526

The Z1+ package: Shortest multiple disconnected path for the analysis of entanglements in macromolecular systems

Martin Kröger, Joseph D. Dietz, Robert S. Hoy and Clarisse Luap
Computer Physics Communications 283 108567 (2023)
https://doi.org/10.1016/j.cpc.2022.108567

Validation and Refinement of Unified Analytic Model for Flexible and Semiflexible Polymer Melt Entanglement

Joseph D. Dietz, Martin Kröger and Robert S. Hoy
Macromolecules 55 (9) 3613 (2022)
https://doi.org/10.1021/acs.macromol.1c02597

Unified Analytic Expressions for the Entanglement Length, Tube Diameter, and Plateau Modulus of Polymer Melts

Robert S. Hoy and Martin Kröger
Physical Review Letters 124 (14) (2020)
https://doi.org/10.1103/PhysRevLett.124.147801

Two-stage athermal solidification of semiflexible polymers and fibers

Joseph D. Dietz and Robert S. Hoy
Soft Matter 16 (26) 6206 (2020)
https://doi.org/10.1039/D0SM00754D

MOLECULAR TREATMENT OF RUBBER-LIKE ELASTICITY FOR ACTIVE FILLER–LOADED NETWORKS

Yoshio Hoei
Rubber Chemistry and Technology 88 (4) 640 (2015)
https://doi.org/10.5254/rct.15.84884

Monte Carlo Simulation of Short Chain Branched Polyolefins: Structure and Properties

Krzysztof Moorthi, Kazunori Kamio, Javier Ramos and Doros N. Theodorou
Macromolecules 45 (20) 8453 (2012)
https://doi.org/10.1021/ma301322v

Development of minimal models of the elastic properties of flexible and stiff polymer networks with permanent and thermoreversible cross-links

David C. Lin, Jack F. Douglas and Ferenc Horkay
Soft Matter 6 (15) 3548 (2010)
https://doi.org/10.1039/b925219n

Viscoelasticity and primitive path analysis of entangled polymer liquids: From F-actin to polyethylene

Nariya Uchida, Gary S. Grest and Ralf Everaers
The Journal of Chemical Physics 128 (4) (2008)
https://doi.org/10.1063/1.2825597

The Influence of Chemical Structure on Polyolefin Melt Rheology and Miscibility

David J. Lohse
Journal of Macromolecular Science, Part C: Polymer Reviews 45 (4) 289 (2005)
https://doi.org/10.1080/15321790500304098

Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems

Martin Kröger
Computer Physics Communications 168 (3) 209 (2005)
https://doi.org/10.1016/j.cpc.2005.01.020

Scale Invariance of the Stress Production Mechanism in Polymeric Systems

R. C. Picu and M. C. Pavel
Macromolecules 36 (24) 9205 (2003)
https://doi.org/10.1021/ma0259867

Quasielastic light scattering of polystyrene in diethyl malonate in semidilute concentration

C. H. Wang, Z. Sun and Q. R. Huang
The Journal of Chemical Physics 105 (14) 6052 (1996)
https://doi.org/10.1063/1.472441

Small-Angle Neutron Scattering Investigation of Topological Constraints and Tube Deformation in Networks

E. Straube, V. Urban, W. Pyckhout-Hintzen, D. Richter and C. J. Glinka
Physical Review Letters 74 (22) 4464 (1995)
https://doi.org/10.1103/PhysRevLett.74.4464

NMR Approach to the Dynamic Screening Effect in Highly Entangled Polymers: Polyethylene Oxide

J. P. Cohen Addad, A. Guillermo and C. Lartigue
Physical Review Letters 74 (19) 3820 (1995)
https://doi.org/10.1103/PhysRevLett.74.3820

Effects of chain topology on polymer dynamics: Bulk melts

J. Scott Shaffer
The Journal of Chemical Physics 101 (5) 4205 (1994)
https://doi.org/10.1063/1.467470

On the strength and deformation dependence of the tube‐like topological constraints of polymer networks, melts and concentrated solutions. II. Polymer melts and concentrated solutions

G. Heinrich and E. Straube
Acta Polymerica 35 (2) 115 (1984)
https://doi.org/10.1002/actp.1984.010350201

Investigations of model polymers: Dynamics of melts and statics of a long chain in a dilute melt of shorter chains

Marvin Bishop, David Ceperley, H. L. Frisch and M. H. Kalos
The Journal of Chemical Physics 76 (3) 1557 (1982)
https://doi.org/10.1063/1.443116

An estimation of the tube radius in the entanglement effect of concentrated polymer solutions

M Doi
Journal of Physics A: Mathematical and General 8 (6) 959 (1975)
https://doi.org/10.1088/0305-4470/8/6/014