La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
J. Isaacson , T.C. Lubensky
J. Physique Lett., 41 19 (1980) 469-471
Citations de cet article :
181 articles | Pages :
Viscoelastic properties of colloidal systems with attractive solid particles at low concentration: A review, new results and interpretations
Philippe Martinoty and Antoni Sánchez-Ferrer Advances in Colloid and Interface Science 335 103335 (2025) https://doi.org/10.1016/j.cis.2024.103335
Universality class of interacting directed single- and double-strand homopolymers
Richard Dengler The European Physical Journal E 47 (11-12) (2024) https://doi.org/10.1140/epje/s10189-024-00461-4
Optical single molecule characterisation of natural and synthetic polymers through nanopores
Charlotte de Blois, Marie Engel, Marie-Amélie Rejou, Bastien Molcrette, Arnaud Favier and Fabien Montel Nanoscale 16 (1) 138 (2024) https://doi.org/10.1039/D3NR04915A
Amoeba Monte Carlo algorithms for random trees with controlled branching activity: Efficient trial move generation and universal dynamics
Pieter H. W. van der Hoek, Angelo Rosa and Ralf Everaers Physical Review E 110 (4) (2024) https://doi.org/10.1103/PhysRevE.110.045312
Probing the Diffusion Mechanism of n-Alkanes in Mesoporous Confinement Using Pulsed Field Gradient NMR
Jack H. Williams, Qingyuan Zheng, Mick D. Mantle, Andrew J. Sederman and Lynn F. Gladden The Journal of Physical Chemistry C 127 (31) 15326 (2023) https://doi.org/10.1021/acs.jpcc.3c02793
Macromolecular Engineering
Susanne Boye, Albena Lederer and Brigitte Voit Macromolecular Engineering 1 (2022) https://doi.org/10.1002/9783527815562.mme0030
Conformational Transition and Interchain Association of Hypergraft HB-PS-g-PtBA Copolymer Chains with Varied Copolymer Compositions and Block Lengths in a Selective Solvent
Siqi Huang, Jinxian Yang, Nairong Hao, et al. Macromolecules 55 (8) 3063 (2022) https://doi.org/10.1021/acs.macromol.1c01971
Monte Carlo simulation of a lattice model for the dynamics of randomly branching double-folded ring polymers
Elham Ghobadpour, Max Kolb, Mohammad Reza Ejtehadi and Ralf Everaers Physical Review E 104 (1) (2021) https://doi.org/10.1103/PhysRevE.104.014501
Flow-Induced Translocation and Conformational Transition of Polymer Chains through Nanochannels: Recent Advances and Future Perspectives
Mingming Ding and Lianwei Li Macromolecules 54 (21) 9773 (2021) https://doi.org/10.1021/acs.macromol.1c00909
Computational Science and Its Applications – ICCSA 2021
David R. Avellaneda B., Ramón E. R. González, Carlos Andrés Collazos-Morales and Paola Ariza-Colpas Lecture Notes in Computer Science, Computational Science and Its Applications – ICCSA 2021 12949 192 (2021) https://doi.org/10.1007/978-3-030-86653-2_14
Chain Conformation of Hyperbranched Polymers with Uniform Branching Subchains in Dilute Solution near the θ Point
Mo Zhu, Jinxian Yang, Liangyi Li, Xiaozheng Duan and Lianwei Li Macromolecules 53 (18) 7980 (2020) https://doi.org/10.1021/acs.macromol.0c01407
Changes of Conformation in Albumin with Temperature by Molecular Dynamics Simulations
Piotr Weber, Piotr Bełdowski, Krzysztof Domino, Damian Ledziński and Adam Gadomski Entropy 22 (4) 405 (2020) https://doi.org/10.3390/e22040405
Randomly branching θ-polymers in two and three dimensions: Average properties and distribution functions
Irene Adroher-Benítez and Angelo Rosa The Journal of Chemical Physics 152 (11) (2020) https://doi.org/10.1063/1.5142838
Effect of pH and Molecular Length on the Structure and Dynamics of Linear and Short-Chain Branched Poly(ethylene imine) in Dilute Solution: Scaling Laws from Detailed Molecular Dynamics Simulations
Dimitris G. Mintis, Terpsichori S. Alexiou and Vlasis G. Mavrantzas The Journal of Physical Chemistry B 124 (28) 6154 (2020) https://doi.org/10.1021/acs.jpcb.0c04135
Conformational statistics of randomly branching double-folded ring polymers
Angelo Rosa and Ralf Everaers The European Physical Journal E 42 (1) (2019) https://doi.org/10.1140/epje/i2019-11765-3
Curling evolution of suspended threads replicates 2D self-avoiding walk phenomena and 1D crystallization process
H D Rahmayanti, R Munir, E Sustini and M Abdullah Journal of Statistical Mechanics: Theory and Experiment 2019 (1) 013401 (2019) https://doi.org/10.1088/1742-5468/aaf322
How Does the Branching Effect of Macromonomer Influence the Polymerization, Structural Features, and Solution Properties of Long-Subchain Hyperbranched Polymers?
Nairong Hao, Xiaozheng Duan, Hongjun Yang, et al. Macromolecules 52 (3) 1065 (2019) https://doi.org/10.1021/acs.macromol.8b02364
Effect of Macromonomer Branching on Structural Features and Solution Properties of Long-Subchain Hyperbranched Polymers: The Case of Four-Arm Star Macromonomers
Nairong Hao, Ahmad Umair, Mo Zhu, Xiaozheng Duan and Lianwei Li Macromolecules 52 (17) 6566 (2019) https://doi.org/10.1021/acs.macromol.9b01103
A comparative study of intrachain cyclization and solution properties of long-subchain hyperbranched polymers prepared via Y-type and V-type macromonomer approaches
Mo Zhu, Nairong Hao, Jinxian Yang and Lianwei Li Polymer Chemistry 9 (20) 2830 (2018) https://doi.org/10.1039/C8PY00362A
Modeling of Carbon Nanotubes as Macromolecular Coils. Melt Viscosity
G. V. Kozlov and I. V. Dolbin High Temperature 56 (5) 830 (2018) https://doi.org/10.1134/S0018151X18050176
SANS Study on Critical Polymer Clusters of Tetra-Functional Polymers
Xiang Li, Kazu Hirosawa, Takamasa Sakai, Elliot P. Gilbert and Mitsuhiro Shibayama Macromolecules 50 (9) 3655 (2017) https://doi.org/10.1021/acs.macromol.7b00528
Flory theory of randomly branched polymers
Ralf Everaers, Alexander Y. Grosberg, Michael Rubinstein and Angelo Rosa Soft Matter 13 (6) 1223 (2017) https://doi.org/10.1039/C6SM02756C
Simulation Study of Ion Diffusion in Charged Nanopores with Anchored Terminal Groups
Elshad Allahyarov, Hartmut Löwen and Philip L. Taylor Electrochimica Acta 242 73 (2017) https://doi.org/10.1016/j.electacta.2017.04.158
Beyond Flory theory: Distribution functions for interacting lattice trees
Angelo Rosa and Ralf Everaers Physical Review E 95 (1) (2017) https://doi.org/10.1103/PhysRevE.95.012117
Free Volume Theory of Hydrocarbon Mixture Transport in Nanoporous Materials
Amaël Obliger, Roland Pellenq, Franz-Josef Ulm and Benoit Coasne The Journal of Physical Chemistry Letters 7 (19) 3712 (2016) https://doi.org/10.1021/acs.jpclett.6b01684
Computer simulations of melts of randomly branching polymers
Angelo Rosa and Ralf Everaers The Journal of Chemical Physics 145 (16) (2016) https://doi.org/10.1063/1.4965827
Computer simulations of randomly branching polymers: annealed versus quenched branching structures
Angelo Rosa and Ralf Everaers Journal of Physics A: Mathematical and Theoretical 49 (34) 345001 (2016) https://doi.org/10.1088/1751-8113/49/34/345001
How do a Polymer Chain Pass through a Cylindrical Pore under an Elongational Flow Field?
Lianwei Li, Qianjin Chen, Fan Jin and Chi Wu Polymer (2015) https://doi.org/10.1016/j.polymer.2015.04.063
Statistical properties of linear-hyperbranched graft copolymers prepared via “hypergrafting” of ABm monomers from linear B-functional core chains: A molecular dynamics simulation
Hauke Rabbel, Holger Frey and Friederike Schmid The Journal of Chemical Physics 143 (24) (2015) https://doi.org/10.1063/1.4935371
How Do Polymer Chains with Different Topologies Pass Through a Cylindrical Pore under an Elongational Flow Field
Li Lian-wei, Jin Fan, He Wei-dong and Wu Chi Acta Polymerica Sinica 014 (1) 1 (2014) https://doi.org/10.3724/SP.J.1105.2014.13390
Studies on "Perfect" Hyperbranched Chains Free in Solution and Confined in a Cylindrical Pore
Lianwei Li Springer Theses, Studies on "Perfect" Hyperbranched Chains Free in Solution and Confined in a Cylindrical Pore 55 (2014) https://doi.org/10.1007/978-3-319-06097-2_5
Ring Polymers in the Melt State: The Physics of Crumpling
Angelo Rosa and Ralf Everaers Physical Review Letters 112 (11) (2014) https://doi.org/10.1103/PhysRevLett.112.118302
Annealed lattice animal model and Flory theory for the melt of non-concatenated rings: towards the physics of crumpling
Alexander Y. Grosberg Soft Matter 10 (4) 560 (2014) https://doi.org/10.1039/C3SM52805G
Nanopore-Based Characterization of Branched Polymers
Takahiro Sakaue and Françoise Brochard-Wyart ACS Macro Letters 3 (2) 194 (2014) https://doi.org/10.1021/mz400598t
Annealed lattice animal model and Flory theory for the melt of non-concatenated rings: towards the physics of crumpling
Alexander Y. Grosberg Soft Matter 10 (4) 560 (2014) https://doi.org/10.1039/c3sm52805g
Unified description of transportation of polymer chains with different topologies through a small cylindrical pore
Chi Wu and Lianwei Li Polymer 54 (5) 1463 (2013) https://doi.org/10.1016/j.polymer.2012.12.074
Shape characteristics of equilibrium and non-equilibrium fractal clusters
Marc L. Mansfield and Jack F. Douglas The Journal of Chemical Physics 139 (4) (2013) https://doi.org/10.1063/1.4813020
The Fractal Physical Chemistry of Polymer Solutions and Melts
The Fractal Physical Chemistry of Polymer Solutions and Melts 25 (2013) https://doi.org/10.1201/b16305-3
The Fractal Physical Chemistry of Polymer Solutions and Melts
The Fractal Physical Chemistry of Polymer Solutions and Melts 1 (2013) https://doi.org/10.1201/b16305-2
Experimental and theoretical studies of scaling of sizes and intrinsic viscosity of hyperbranched chains in good solvents
Lianwei Li, Yuyuan Lu, Lijia An and Chi Wu The Journal of Chemical Physics 138 (11) (2013) https://doi.org/10.1063/1.4795577
A Periciliary Brush Promotes the Lung Health by Separating the Mucus Layer from Airway Epithelia
Brian Button, Li-Heng Cai, Camille Ehre, Mehmet Kesimer, David B. Hill, John K. Sheehan, Richard C. Boucher and Michael Rubinstein Science 337 (6097) 937 (2012) https://doi.org/10.1126/science.1223012
How Does a Hyperbranched Chain Pass through a Nanopore?
Lianwei Li, Chen He, Weidong He and Chi Wu Macromolecules 45 (18) 7583 (2012) https://doi.org/10.1021/ma301468z
Polymer Science: A Comprehensive Reference
O.V. Borisov Polymer Science: A Comprehensive Reference 47 (2012) https://doi.org/10.1016/B978-0-444-53349-4.00004-2
Concentration dependence of excluded volume effects
Kazumi Suematsu Colloid and Polymer Science 290 (6) 481 (2012) https://doi.org/10.1007/s00396-011-2552-3
Collapse transition of randomly branched polymers: Renormalized field theory
Hans-Karl Janssen and Olaf Stenull Physical Review E 83 (5) (2011) https://doi.org/10.1103/PhysRevE.83.051126
Formation Kinetics and Scaling of “Defect-Free” Hyperbranched Polystyrene Chains with Uniform Subchains Prepared from Seesaw-Type Macromonomers
Lianwei Li, Chen He, Weidong He and Chi Wu Macromolecules 44 (20) 8195 (2011) https://doi.org/10.1021/ma201687s
Relation between the Solution-State Behavior of Self-Assembled Monolayers on Nanoparticles and Dispersion of Nanoparticles in Organic Solvents
Toshihiko Arita, Jungwoo Yoo and Tadafumi Adschiri The Journal of Physical Chemistry C 115 (10) 3899 (2011) https://doi.org/10.1021/jp110172s
Fresh look at randomly branched polymers
H.-K. Janssen and O. Stenull EPL (Europhysics Letters) 90 (4) 46003 (2010) https://doi.org/10.1209/0295-5075/90/46003
A competitive aggregation model for Flash NanoPrecipitation
Janine Chungyin Cheng, R.D. Vigil and R.O. Fox Journal of Colloid and Interface Science 351 (2) 330 (2010) https://doi.org/10.1016/j.jcis.2010.07.066
Forced translocation of polymer chains through a nanotube: A case of ultrafiltration
Ashok K. Das and Po-Da Hong Polymer 51 (10) 2244 (2010) https://doi.org/10.1016/j.polymer.2010.03.030
Self Organized Nanostructures of Amphiphilic Block Copolymers I
Oleg V. Borisov, Ekaterina B. Zhulina, Frans A. M. Leermakers, Matthias Ballauff and Axel H. E. Müller Advances in Polymer Science, Self Organized Nanostructures of Amphiphilic Block Copolymers I 241 1 (2010) https://doi.org/10.1007/12_2010_104
Dynamic conductivity of composites of fractal structure
Vitaly V. Novikov and Dmitry Y. Zubkov Physica B: Condensed Matter 404 (21) 3867 (2009) https://doi.org/10.1016/j.physb.2009.07.105
Macromolecular Engineering
Hideharu Mori, Axel H. E. Müller and Peter F. W. Simon Macromolecular Engineering 973 (2007) https://doi.org/10.1002/9783527631421.ch23
Theory of Gelation: Examination of the Random Distribution Assumption of Cyclic Bonds
Kazumi Suematsu Journal of the Physical Society of Japan 75 (6) 064802 (2006) https://doi.org/10.1143/JPSJ.75.064802
Polymer Chains in Confined Spaces and Flow-Injection Problems: Some Remarks
Takahiro Sakaue and Elie Raphaël Macromolecules 39 (7) 2621 (2006) https://doi.org/10.1021/ma0514424
Square lattice directed paths adsorbing on the lineY=qX
E J Janse van Rensburg Journal of Statistical Mechanics: Theory and Experiment 2005 (09) P09010 (2005) https://doi.org/10.1088/1742-5468/2005/09/P09010
Monte Carlo simulation of dendrimers in variable solvent quality
G. Giupponi and D. M. A. Buzza The Journal of Chemical Physics 120 (21) 10290 (2004) https://doi.org/10.1063/1.1714829
Power law polydispersity and fractal structure of hyperbranched polymers
D. M. A. Buzza The European Physical Journal E 13 (1) 79 (2004) https://doi.org/10.1140/epje/e2004-00042-3
High precision canonical Monte Carlo determination of the growth constant of square lattice trees
E. J. Janse van Rensburg and A. Rechnitzer Physical Review E 67 (3) (2003) https://doi.org/10.1103/PhysRevE.67.036116
Exotic trees
Z. Burda, J. Erdmann, B. Petersson and M. Wattenberg Physical Review E 67 (2) (2003) https://doi.org/10.1103/PhysRevE.67.026105
Molecular characterization of a hyperbranched polyester. I. Dilute solution properties
Edoardo De Luca and Randal W. Richards Journal of Polymer Science Part B: Polymer Physics 41 (12) 1339 (2003) https://doi.org/10.1002/polb.10463
Structure and Dynamics of Confined Polymers
C. Gay, P.-G. Gennes, E. Raphaël and F. Brochard-Wyart Structure and Dynamics of Confined Polymers 131 (2002) https://doi.org/10.1007/978-94-010-0401-5_8
Diffusion in disordered media
Shlomo Havlin and Daniel Ben-Avraham Advances in Physics 51 (1) 187 (2002) https://doi.org/10.1080/00018730110116353
Molecular Simulation Fracture Gel Theory
Kazumi Suematsu Advances in Polymer Science, Molecular Simulation Fracture Gel Theory 156 137 (2002) https://doi.org/10.1007/3-540-45141-2_3
Molecular Structure Characterization of Hyperbranched Polyesteramides
Erik T. F. Geladé, Bart Goderis, Chris G. de Koster, et al. Macromolecules 34 (11) 3552 (2001) https://doi.org/10.1021/ma001266t
Scaling Theory of Branched Polyelectrolytes
O. V. Borisov and M. Daoud Macromolecules 34 (23) 8286 (2001) https://doi.org/10.1021/ma0022001
Fractal analysis of macromolecules
Viktor U Novikov and Georgii V Kozlov Russian Chemical Reviews 69 (4) 347 (2000) https://doi.org/10.1070/RC2000v069n04ABEH000523
A modified CCA model describing gelation processes
K. Ohno and Y. Kawazoe Computational and Theoretical Polymer Science 10 (3-4) 269 (2000) https://doi.org/10.1016/S1089-3156(99)00049-5
Structure and properties of polymers in terms of the fractal approach
Viktor U Novikov and Georgii V Kozlov Russian Chemical Reviews 69 (6) 523 (2000) https://doi.org/10.1070/RC2000v069n06ABEH000592
Estimation of critical points of branched polymers
Kazumi Suematsu and Minoru Kohno Physical Review E 62 (3) 3944 (2000) https://doi.org/10.1103/PhysRevE.62.3944
Semianalytical calculation of the Rouse dynamics of randomly branched polymers
Josh P. Kemp and Zheng Yu Chen Physical Review E 60 (3) 2994 (1999) https://doi.org/10.1103/PhysRevE.60.2994
Computational Materials Science
Kaoru Ohno, Keivan Esfarjani and Yoshiyuki Kawazoe Springer Series in Solid-State Sciences, Computational Materials Science 129 195 (1999) https://doi.org/10.1007/978-3-642-59859-3_5
Branched Polymers II
Walther Burchard Advances in Polymer Science, Branched Polymers II 143 113 (1999) https://doi.org/10.1007/3-540-49780-3_3
Polymers in Confined Environments
Pierre-Gilles Gennes Advances in Polymer Science, Polymers in Confined Environments 138 91 (1999) https://doi.org/10.1007/3-540-69711-X_2
High-Dimensional Bak-Sneppen Model
Paolo De Los Rios, Matteo Marsili and Michele Vendruscolo Physical Review Letters 80 (26) 5746 (1998) https://doi.org/10.1103/PhysRevLett.80.5746
Nonexponential dynamic relaxation of randomly branched polymers in good solvents
Josh Kemp and Zheng Yu Chen Physical Review E 56 (6) 7017 (1997) https://doi.org/10.1103/PhysRevE.56.7017
Conformations of Polymers with Random Branches of Constant Number in Athermal Isolated Condition
Shujiro Shiga Polymer Journal 29 (7) 588 (1997) https://doi.org/10.1295/polymj.29.588
Disordered polymers
Aleksandr Yu. Grosberg Uspekhi Fizicheskih Nauk 167 (02) 129 (1997) https://doi.org/10.3367/UFNr.0167.199702b.0129
Disordered polymers
Aleksandr Yu Grosberg Physics-Uspekhi 40 (2) 125 (1997) https://doi.org/10.1070/PU1997v040n02ABEH000192
Fractal dimension of collision cascades
F. Kun and G. Bardos Physical Review E 55 (2) 1508 (1997) https://doi.org/10.1103/PhysRevE.55.1508
Monte Carlo simulations of randomly branched polymers with annealed and quenched branching structures
Shi-Min Cui and Zheng Yu Chen Physical Review E 53 (6) 6238 (1996) https://doi.org/10.1103/PhysRevE.53.6238
Characterization of branched polyethyleneimine by laser light scattering and viscometry
II Hyun Park and E-Joon Choi Polymer 37 (2) 313 (1996) https://doi.org/10.1016/0032-3861(96)81104-9
Swelling and growth of polymers, membranes, and sponges
Jack F. Douglas Physical Review E 54 (3) 2677 (1996) https://doi.org/10.1103/PhysRevE.54.2677
Injection Threshold for a Statistically Branched Polymer inside a Nanopore
C. Gay, P. G. de Gennes, E. Raphaël and F. Brochard-Wyart Macromolecules 29 (26) 8379 (1996) https://doi.org/10.1021/ma960941p
Polyelectrolyte manifolds
O. V Borisov and T. A Vilgis Europhysics Letters (EPL) 35 (5) 327 (1996) https://doi.org/10.1209/epl/i1996-00114-3
Brushes formed by self‐similarly branched polymers and random manifolds
Thomas A. Vilgis and Peter Haronska Macromolecular Theory and Simulations 4 (1) 111 (1995) https://doi.org/10.1002/mats.1995.040040107
Geometrical description of phase transitions in terms of diagrams and their growth function
P. D. Gujrati Physical Review E 51 (2) 957 (1995) https://doi.org/10.1103/PhysRevE.51.957
Conformation-space renormalization of randomly branched polymers
Shi-Min Cui and Zheng Yu Chen Physical Review E 52 (4) 3943 (1995) https://doi.org/10.1103/PhysRevE.52.3943
Critical behavior of randomly branched polymers with quenched branchings
Shi-Min Cui and Zheng Yu Chen Physical Review E 52 (5) 5084 (1995) https://doi.org/10.1103/PhysRevE.52.5084
A rigorous bound on the critical exponent for the number of lattice trees, animals, and polygons
Neal Madras Journal of Statistical Physics 78 (3-4) 681 (1995) https://doi.org/10.1007/BF02183684
Dynamics of a Ring Polymer in a Gel
Sergei P. Obukhov, Michael Rubinstein and Thomas Duke Physical Review Letters 73 (9) 1263 (1994) https://doi.org/10.1103/PhysRevLett.73.1263
A Monte Carlo Study of Ring Polymers in Disordered Systems
Dilip Gersappe and Monica Olvera De La Cruz Molecular Simulation 13 (4-5) 267 (1994) https://doi.org/10.1080/08927029408021993
Surfaces in the hypercubic lattice
E J Janse van Rensburg Journal of Physics A: Mathematical and General 25 (12) 3529 (1992) https://doi.org/10.1088/0305-4470/25/12/015
A nonlocal Monte Carlo algorithm for lattice trees
E J Janse van Rensburg and N Madras Journal of Physics A: Mathematical and General 25 (2) 303 (1992) https://doi.org/10.1088/0305-4470/25/2/013
Inflated vesicles: A lattice model
A. Baumgärtner Physica A: Statistical Mechanics and its Applications 190 (1-2) 63 (1992) https://doi.org/10.1016/0378-4371(92)90077-4
The Monte Carlo Method in Condensed Matter Physics
Artur Baumgärtner Topics in Applied Physics, The Monte Carlo Method in Condensed Matter Physics 71 285 (1992) https://doi.org/10.1007/978-3-662-02855-1_9
Description of critical dynamics by static geometry of clusters
Z. Alexandrowicz Physica A: Statistical Mechanics and its Applications 189 (1-2) 148 (1992) https://doi.org/10.1016/0378-4371(92)90132-A
The Monte Carlo Method in Condensed Matter Physics
Artur Baumgärtner Topics in Applied Physics, The Monte Carlo Method in Condensed Matter Physics 71 285 (1992) https://doi.org/10.1007/3-540-60174-0_9
Decay of density fluctuations in gels
James E. Martin, Jess Wilcoxon and Judy Odinek Physical Review A 43 (2) 858 (1991) https://doi.org/10.1103/PhysRevA.43.858
Tethered vesicles at constant pressure: Monte Carlo study and scaling analysis
S. Komura and A. Baumgärtner Physical Review A 44 (6) 3511 (1991) https://doi.org/10.1103/PhysRevA.44.3511
Pages :
1 à 100 sur 181 articles