La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
S. Alexander , O. Entin-Wohlman , R. Orbach
J. Physique Lett., 46 12 (1985) 549-554
Citations de cet article :
25 articles
Fractons in Proteins: Can They Lead to Anomalously Decaying Time Autocorrelations?
Rony Granek and Joseph Klafter Physical Review Letters 95 (9) (2005) https://doi.org/10.1103/PhysRevLett.95.098106
The physical basis for the magnetic field dependence of proton spin-lattice relaxation rates in proteins
Jean-Pierre Korb and Robert G. Bryant The Journal of Chemical Physics 115 (23) 10964 (2001) https://doi.org/10.1063/1.1417509
Proton spin relaxation induced by localized spin-dynamical coupling in proteins
J.-P. Korb, A. Van-Quynh and R.G. Bryant Chemical Physics Letters 339 (1-2) 77 (2001) https://doi.org/10.1016/S0009-2614(01)00303-7
Low-frequency localized spin-dynamical coupling in proteins
Jean-Pierre Korb, Alexandra Van-Quynh and Robert Bryant Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry 4 (11) 833 (2001) https://doi.org/10.1016/S1387-1609(01)01323-8
Proton Spin-Relaxation Induced by Localized Spin-Dynamical Coupling in Proteins And in Other Imperfectly Packed Solids
J.-P. Korb, A. Van-Quynh and R. G. Bryant MRS Proceedings 651 (2000) https://doi.org/10.1557/PROC-651-T3.7.1
Dynamical properties of fractal networks: Scaling, numerical simulations, and physical realizations
Tsuneyoshi Nakayama, Kousuke Yakubo and Raymond L. Orbach Reviews of Modern Physics 66 (2) 381 (1994) https://doi.org/10.1103/RevModPhys.66.381
EPR studies ofAsO44−spin-lattice-relaxation times in antiferroelectricNH4H2AsO4and mixed glassyRb1−x(NH4)xH2AsO4(x=0.35)
S. Waplak, Z. Trybula, John E. Drumheller and V. Hugo Schmidt Physical Review B 42 (13) 7777 (1990) https://doi.org/10.1103/PhysRevB.42.7777
Fracton dynamics of percolating elastic networks: Energy spectrum and localized nature
K. Yakubo and T. Nakayama Physical Review B 40 (1) 517 (1989) https://doi.org/10.1103/PhysRevB.40.517
Characteristics of Fractons: from Specific Realizations to Ensemble Averages
Tsuneyoshi Nakayama, Kousuke Yakubo and Raymond Orbach Journal of the Physical Society of Japan 58 (6) 1891 (1989) https://doi.org/10.1143/JPSJ.58.1891
Thermal conductivity of amorphous materials above the plateau
A. Jagannathan, R. Orbach and O. Entin-Wohlman Physical Review B 39 (18) 13465 (1989) https://doi.org/10.1103/PhysRevB.39.13465
Fracton dynamics
R. Orbach Physica D: Nonlinear Phenomena 38 (1-3) 266 (1989) https://doi.org/10.1016/0167-2789(89)90204-2
Fractals in luminescence
A. Blumen, J. Klafter and G. Zumofen Journal of Luminescence 40-41 80 (1988) https://doi.org/10.1016/0022-2313(88)90103-2
Condensed Matter Physics
O. Entin-Wohlman Condensed Matter Physics 160 (1987) https://doi.org/10.1007/978-1-4612-4772-2_16
Relaxation and nonradiative decay in disordered systems. III. Statistical character of Raman (two-quanta) spin-lattice relaxation
S. Alexander, Ora Entin-Wohlman and R. Orbach Physical Review B 35 (3) 1166 (1987) https://doi.org/10.1103/PhysRevB.35.1166
Amorphous and Liquid Materials
B. Souillard Amorphous and Liquid Materials 19 (1987) https://doi.org/10.1007/978-94-009-3505-1_2
Superlocalization of Electrons and Waves in Fractal Media
Y.-E Lévy and B Souillard Europhysics Letters (EPL) 4 (2) 233 (1987) https://doi.org/10.1209/0295-5075/4/2/016
Fractons
S. Alexander Physica A: Statistical Mechanics and its Applications 140 (1-2) 397 (1986) https://doi.org/10.1016/0378-4371(86)90246-3
Relaxation and nonradiative decay in disordered systems. II. Two-fracton inelastic scattering
S. Alexander, Ora Entin-Wohlman and R. Orbach Physical Review B 33 (6) 3935 (1986) https://doi.org/10.1103/PhysRevB.33.3935
Fracton contribution to the temperature dependence of the homogeneous linewidth of theD05−7F0transition inEu3+-doped glasses
George S. Dixon, Richard C. Powell and Xu Gang Physical Review B 33 (4) 2713 (1986) https://doi.org/10.1103/PhysRevB.33.2713
A model for the specific heat of amorphous polymers
James P. Allen The Journal of Chemical Physics 84 (8) 4680 (1986) https://doi.org/10.1063/1.449995
Dynamics of Fractal Networks
R. Orbach Science 231 (4740) 814 (1986) https://doi.org/10.1126/science.231.4740.814
Optical Spectroscopy of Glasses
A. Blumen, J. Klafter and G. Zumofen Physic and Chemistry of Materials with Low-Dimensional Structures, Optical Spectroscopy of Glasses 1 199 (1986) https://doi.org/10.1007/978-94-009-4650-7_5
Relaxation and nonradiative decay in disordered systems. I. One-fracton emission
S. Alexander, Ora Entin-Wohlman and R. Orbach Physical Review B 32 (10) 6447 (1985) https://doi.org/10.1103/PhysRevB.32.6447
Inelastic extended-electron–localized-vibrational-state scattering rate
Ora Entin-Wohlman, S. Alexander and R. Orbach Physical Review B 32 (12) 8007 (1985) https://doi.org/10.1103/PhysRevB.32.8007
Relaxation rate distribution and decay profile : two fracton relaxation
S. Alexander, O. Entin-Wohlman and R. Orbach Journal de Physique Lettres 46 (12) 555 (1985) https://doi.org/10.1051/jphyslet:019850046012055500